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The beginnings of modern cosmology

1915: Einstein works out the model of General Relativity, describing 
gravitation and its coupling with space and time.

Willem de Sitter uses GR to work out a model that has the Universe expanding 
in time. Einstein rejects that concept, adding an ad-hoc term to his equations 
called the cosmological constant which keeps the universe from expanding.

Albert Einstein

Willem de Sitter



The beginnings of modern cosmology

1915: Einstein works out the model of General Relativity, describing 
gravitation and its coupling with space and time.

Willem de Sitter uses GR to work out a model that has the Universe expanding 
in time. Einstein rejects that concept, adding an ad-hoc term to his equations 
called the cosmological constant which keeps the universe from expanding.

1920s: Alexander Friedman and Georges Lemaître also put forth models of an 
expanding universe.

Edwin Hubble1929: Edwin Hubble discovers the 
expansion of the Universe.

Einstein gives up on the cosmological 
constant, calling it his ”greatest blunder.”

Alexander Friedmann

Georges Lemaître



The Expanding Universe

Hubble’s Law: 𝑣 = 𝐻!𝑑, where 𝐻! ≈ 72 km/s/Mpc

(Note: Hubble got 𝐻! wrong, by a lot. 𝐻! is the slope of 
that line ⇒ which is about 500 km/s/Mpc. Hubble’s 
incorrect distances were the problem.....)

Hubble 1929

The true meaning of redshift: cosmological expansion

Remember redshift:

𝑧 = )!"#*)$
)$

= ∆)
)$

We originally referred to this using the Doppler shift, but this is 
not correct. The Universe – space itself – is expanding. As light 
moves through an expanding Universe, its wavelength is 
stretched: a redshift.

Important Note: on small scales the expansion is weak 
and gravitational forces can overcome it. The solar 
system is not expanding, galaxies are not growing 
bigger, even galaxy clusters do not expand.

You are not (cosmologically) expanding!



Coordinates and distances in an expanding universe

Do describe coordinates in an expanding universe, we 
define something called a co-moving coordinate system
that expands along with the universe. We can then 
describe a proper distance this way

𝑑 = 𝑅 𝑡 𝑟

𝑑 : proper distance
𝑟 : co-moving distance
𝑅 𝑡 : dimensionless scale factor describing expansion

We define  𝑡 = 𝑡! to be now, and 𝑅 𝑡! ≡ 1.0. The scale 
factor of the universe is exactly one today by definition.

But the proper distance to a galaxy is not measurable in any conventional sense.

It is not the distance you would have to travel to get to the galaxy.
It is also not the same as the distance the galaxy’s light has travelled to get to us.
It is also not the distance you use in the magnitude-distance equation (𝑚 −𝑀 = 5 log 𝑑 − 5)
It is also not the distance you use to convert angular size to physical size (𝐷"#$% = 𝑑 tan𝛼 ≈ ⁄𝛼[&&]𝑑 206265)

For these reasons, in cosmology we 
do not talk in terms of distances, we 
use redshifts.
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Redshift and expansion factor

Start with the definition of redshift, writing in terms of 
the emitting wavelength of light and the observed 
wavelength of light.

Then rearrange terms a bit:

The stretching of light is due to the expansion of the 
universe, and is just given by the ratio of the scale 
factor. If the universe doubled in size, the wavelength 
was stretched by a factor of two.

And since we are observing today, and have defined the 
scale factor of the universe today  to be exactly one:

So scale factor is measurable!

If we detect light from a galaxy 
that has a redshift of 𝑧 = 3, we are 
seeing the galaxy as it was when 
the scale factor was

𝑅FG = ⁄1 1 + 𝑧
= ⁄1 4

So we see the galaxy as it was 
when the universe was a quarter 
of its current size.



The age of the Universe

If the universe is expanding, then if we run it backwards 
it must have had a time when 𝑅(𝑡) → 0. The beginning! 

When was that? Homer Simpson math time.

An object moving at a constant speed covers a distance
𝑑 = 𝑣𝑡

or equivalently, to cover a distance 𝑑 it will take a time
𝑡 = ⁄𝑑 𝑣

Now think of a galaxy at a distance 𝑑. If the expansion 
rate has been constant over time, that expansion rate is 
given by the Hubble constant: 𝑣 = 𝐻!𝑑.

Then 𝑡! = ⁄𝑑 𝑣 = ⁄𝑑 𝐻!𝑑 = ⁄1 𝐻!. 

Homer says the age of the Universe is ⁄1 𝐻!.

What is the big assumption built in? 
Constant expansion rate.

𝐻! = 72 km/s/Mpc
𝐻! ≈ 72 pc/Myr/Mpc 

= 72×10'( Mpc/Myr/Mpc = 7.2×10') Myr-1

Then 𝑡! = ⁄1 𝐻! ≈ 1.39×10* Myr = 13.9 billion years!



Solving for R(t): Newtonian Cosmology

Think of a particle on an expanding sphere with size 
𝑅 and total mass 𝑀. What is its equation of motion?

Notation: 
𝑅: distance from center (changes with time)
�̇� : 1st derivitive w.r.t time ( ⁄𝑑𝑅 𝑑𝑡, or velocity)
�̈�: 2nd derivitive w.r.t time ( ⁄𝑑+𝑅 𝑑𝑡+, or acceleration)

Also:
𝜌 : density of sphere (changes with time)
𝜌! : density of sphere today (a fixed value)

�̈� = −
𝐺𝑀
𝑅+ = −

4𝜋
3
𝐺𝜌𝑅

𝜌 = 𝜌!𝑅',

�̈� = −
4𝜋
3
𝐺𝜌!
𝑅+

�̇��̈� +
4𝜋
3
𝐺𝜌!
𝑅+ �̇� = 0

1
2
𝑑 �̇�+

𝑑𝑡 +
4𝜋
3
𝐺𝜌!
𝑅+

𝑑𝑅
𝑑𝑡 = 0

𝑑
𝑑𝑡 �̇�

+ −
⁄8𝜋𝐺𝜌! 3

𝑅 = 0

�̇�+ −
⁄8𝜋𝐺𝜌! 3

𝑅 = −𝑘

⇐ replacing 𝑀 with 𝜌 × 𝑉

⇐ density scales with volume

⇐ so substitute to get this

⇐ multiply both sides by �̇� to get this

⇐ substitute using this relation
𝑑 �̇�+

𝑑𝑡 = 2�̇��̈�

⇐ substitute using this relation
1
𝑅+
𝑑𝑅
𝑑𝑡 = −

𝑑( ⁄1 𝑅)
𝑑𝑡

⇐ if -.
-/
= 0, then 𝑓 is a constant

R

𝑀 = 𝜌𝑉



so we had

�̇�+ −
⁄8𝜋𝐺𝜌! 3

𝑅
= −𝑘

rewrite this as

�̇�+ =
⁄8𝜋𝐺𝜌! 3

𝑅
− 𝑘

to look at behavior over time.

Now, one final rewrite: replace 𝜌!
with 𝜌𝑅, and divide everything by 𝑅+
to get:

�̇�
𝑅

+

−
8
3𝜋𝐺𝜌 = −

𝑘
𝑅+

Solving for R(t): Newtonian Cosmology Possibilities for 𝒌:

𝒌 = 𝟎: Then �̇� is always positive, so the 
sphere always expands, but at an ever-
slowing rate: �̇� → 0 as 𝑅 → ∞.

𝒌 > 𝟎: �̇� is initially positive but at some 
point will reach zero, then gravity wins 
and the sphere begins to contract.

𝒌 < 𝟎: �̇� is always positive and so the 
universe is always expanding. 
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Solving for R(t): Newtonian Cosmology Possibilities for 𝒌:

𝒌 = 𝟎: Then �̇� is always positive, so the 
sphere always expands, but at an ever-
slowing rate: �̇� → 0 as 𝑅 → ∞.
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point will reach zero, then gravity wins 
and the sphere begins to contract.

𝒌 < 𝟎: �̇� is always positive and so the 
universe is always expanding. 



The Friedmann Equation

So under Newtonian dynamics we had

�̇�
𝑅

+

−
8
3
𝜋𝐺𝜌 = −

𝑘
𝑅+

Surely a proper derivation using General Relativity 
can’t look anything like that, right?

Actually, it can. Solving the Einstein field equations for 
an isotropic, homogenous universe gives the 
dynamics equation:

�̈�
𝑅 = −

4𝜋
3 𝐺𝜌 +

1
3Λ𝑐

+

which solves to the Friedmann Equation

Important Notes:

1. The dynamics equation says the without the cosmological 
constant, the universe can’t be static. This is why Einstein 
introduced the cosmological constant: to get a static universe.

2. Under GR, 𝑘 is linked to the curvature of space.
𝑘 = 0 𝑘 > 0 𝑘 < 0

3. If there’s no cosmological constant (Λ = 0), the curvature of 
space and the expansion history are tightly connected. 

𝑘 = 0 𝑘 > 0 𝑘 < 0
universe continually    universe eventually        universe expands

slows                        recollapses                         forever

�̇�
𝑅

+

−
8
3𝜋𝐺𝜌 −

1
3Λ𝑐

+ = −
𝑘𝑐+

𝑅+



The (Basic) Cosmological Parameters

The Hubble Parameter (𝑯): 

𝐻 ≡
�̇�
𝑅

𝐻 is the normalized rate of expansion, and changes with time as 
the universe expands. 

Its value at the current time (i.e., at 𝑡 = 𝑡!), it is called the 
Hubble constant, 𝐻!.

Current measures put 𝐻! = 72 km/s/Mpc or so.

�̇�
𝑅

d

−
8
3
𝜋𝐺𝜌 −

1
3
Λ𝑐d = −

𝑘𝑐d

𝑅d



The (Basic) Cosmological Parameters

The matter density parameter (𝛀𝐦):

Rewrite the Friedmann equation using the Hubble parameter and 
setting Λ = 0:

𝐻+ −
8
3
𝜋𝐺𝜌 = −

𝑘𝑐+

𝑅+

k = 0 means the universe is spatially flat, so a “no lambda” 
universe (Λ = 0) universe is spatially flat if it has a critical density 
𝜌123/ given by:

𝜌123/ =
3𝐻+

8𝜋𝐺

We define the matter density parameter as

Ω4 =
𝜌

𝜌123/

Current measures put 𝛺4,! ≈ 0.30

�̇�
𝑅

d

−
8
3
𝜋𝐺𝜌 −

1
3
Λ𝑐d = −

𝑘𝑐d

𝑅d

The matter density parameter tells you if gravity alone is 
sufficient to “flatten” the Universe (i.e., if Ω4 = 1).

The data says it is not.



The (Basic) Cosmological Parameters

The “dark energy” density parameter (𝛀𝜦):

Rewrite the Friedmann equation using the Hubble parameter and 
setting 𝜌 = 0:

𝐻+ −
1
3
Λ𝑐+ = −

𝑘𝑐+

𝑅+

k = 0 means the universe is spatially flat, so a matter-free universe 
(𝜌 = 0) universe is spatially flat if it a critical value of Λ of

Λ123/ =
3𝐻+

𝑐+

We define the dark energy density parameter as

Ω7 =
Λ

Λ123/

Current measures put 𝛺7,! ≈ 0.7

�̇�
𝑅

d

−
8
3
𝜋𝐺𝜌 −

1
3
Λ𝑐d = −

𝑘𝑐d

𝑅d

The dark energy density parameter tells you if Λ alone is 
sufficient to “flatten” the Universe (i.e., if Ω7 = 1).

The data says it is not.



The (Basic) Cosmological Parameters

“Total Omega” (𝛀): 𝛀 = 𝛀𝒎 + 𝛀𝚲

Total Omega tells you if gravity and dark energy combined can make the 
universe spatially flat (if Ω = 1):

Current estimates say Ω! = Ω:,! + Ω;,! ≈ 0.3 + 0.7 = 1.0

The universe is spatially flat!

�̇�
𝑅

d

−
8
3
𝜋𝐺𝜌 −

1
3
Λ𝑐d = −

𝑘𝑐d

𝑅d



Cosmological Parameters

1. The Hubble Constant (normalized expansion rate today): 

𝐻! = ⁄�̇� 𝑅 /</!
≈ 68 − 72 km/s/Mpc

More generally, the Hubble Parameter (changes with time)

𝐻 ≡ ⁄�̇� 𝑅

2. The Matter Density parameter (normalized mass density):

Ω4 =
𝜌

𝜌123/
, Ω4,! ≈ 0.3

3. The Dark Energy Density parameter (normalized dark energy 
density):

Ω7 =
Λ

Λ123/
, Ω7,! ≈ 0.7

The Friedman Equation

�̇�
𝑅

d

−
8
3
𝜋𝐺𝜌 −

1
3
Λ𝑐d = −

𝑘𝑐d

𝑅d

The Dynamics Equation

�̈�
𝑅
= −

4𝜋
3
𝐺𝜌 +

1
3
Λ𝑐d
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In this Universe, R(t) is a straight line, and 
Homer worked out an age of 13.9 billion 
years for 𝐻! = 72 km/s/Mpc.

The Hubble Parameter is given by

𝐻 ≡
�̇�
𝑅

so it’s the slope of the R(t) line divided by the 
scale factor itself (R). 

The R(t) plot: Understanding the parameters graphically and intuitively

Imagine a Universe that is expanding at a constant rate (Homer Simpson Universe).
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In this Universe, R(t) is a straight line, and 
Homer worked out an age of 13.9 billion 
years for 𝐻! = 72 km/s/Mpc..

The Hubble Constant is the Hubble 
Parameter today (at 𝑡 = 𝑡!). 

So it is the slope of the line today, divided by 
𝑅! = 1.

𝐻! ≡
�̇�(𝑡!)
𝑅!

= �̇�(𝑡!)

So the Hubble Constant is essentially just the 
slope of the line today.

The R(t) plot: Understanding the parameters graphically and intuitively

Imagine a Universe that is expanding at a constant rate (Homer Simpson Universe).

at 
𝒕 𝟎,

slo
pe =

𝑯 𝟎



Changing the Hubble Constant means 
changing the slope at 𝑡 = 𝑡!. 

Remember the boundary conditions! No 
matter how you change the parameters of 
the Universe, R(t) has to satisfy the following 
conditions:

• 𝑅 𝑡! = 1
• 𝐻 𝑡! = ?̇ /!

?!
= �̇� 𝑡! = 𝐻!

This changes 𝑡!, the age of the Universe! This 
is why, for a contant expansion universe,

𝑡! = ⁄1 𝐻!

A higher Hubble constant results in a younger 
Universe, and vice-versa.

The R(t) plot: Understanding the parameters graphically and intuitively

Imagine a Universe that is expanding at a constant rate (Homer Simpson Universe).



The R(t) plot: Understanding the parameters graphically and intuitively

Now add matter to the Universe (so Ω4 > 0) but no cosmological constant (Ω7 = 0). Matter has gravity, and 
gravity slows down the expansion: deceleration. The Universe must have been expanding faster in the past, so 
R(t) must be “bending downwards.”

But we still have to obey the boundary 
conditions!

• 𝑅 𝑡! = 1
• 𝐻 𝑡! = ?̇ /!

? /!
= �̇� 𝑡! = 𝐻!



The R(t) plot: Understanding the parameters graphically and intuitively

Now add matter to the Universe (so Ω4 > 0) but no cosmological constant (Ω7 = 0). Matter has gravity, and 
gravity slows down the expansion: deceleration. The Universe must have been expanding faster in the past, so 
R(t) must be “bending downwards.”

at 
𝒕 𝟎,

slo
pe =

𝑯 𝟎

But we still have to obey the boundary 
conditions!

• 𝑅 𝑡! = 1
• 𝐻 𝑡! = ?̇ /!

? /!
= �̇� 𝑡! = 𝐻!

The more mass you put in (bigger Ω4) the 
more the curve bends (deceleration due to 
gravity is getting strong), and the younger the 
Universe gets.

For Ω4 = 1, Ω7 = 0, �̇� t ⟶ 0 as t ⟶ ∞



But we still have to obey the boundary 
conditions!

• 𝑅 𝑡! = 1
• 𝐻 𝑡! = ?̇ /!

? /!
= �̇� 𝑡! = 𝐻!

The more mass you put in (bigger Ω4) the 
more the curve bends (deceleration due to 
gravity is getting strong), and the younger the 
Universe gets.

For Ω4 = 1, Ω7 = 0, �̇� t ⟶ 0 as t ⟶ ∞

For Ω4 > 1, Ω7 = 0, the Universe eventually 
recollapses.

The R(t) plot: Understanding the parameters graphically and intuitively

Now add matter to the Universe (so Ω4 > 0) but no cosmological constant (Ω7 = 0). Matter has gravity, and 
gravity slows down the expansion: deceleration. The Universe must have been expanding faster in the past, so 
R(t) must be “bending downwards.”

at 
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What if we want the same age?

If I wanted to add mass but keep the age the 
same, I have to change the Hubble Constant 
𝐻!. So I’m changing the slope at 𝑡 = 𝑡!.

Three universes with different amounts of 
matter but having the same age due to 
different Hubble Constants. ⇒

But we have observational constraints on the 
Hubble Constant, so we are not free to do just 
anything we want with it!

The R(t) plot: Understanding the parameters graphically and intuitively

Now add matter to the Universe (so Ω4 > 0) but no cosmological constant (Ω7 = 0). Matter has gravity, and 
gravity slows down the expansion: deceleration. The Universe must have been expanding faster in the past, so 
R(t) must be “bending downwards.”



Again, since we have to obey the boundary 
conditions (𝑅!, 𝐻!), an accelerating universe 
must be older than a constant expansion 
universe.

In fact, if we add too much lambda, we run 
into the problem of a universe that never has 
a beginning!

🤯

The R(t) plot: Understanding the parameters graphically and intuitively

Now remove matter and add a cosmological constant to the Universe (so Ω4 = 0, Ω7 > 0). This accelerates the 
expansion of  Universe. It must have been expanding slower in the past, so R(t) must be “bending upwards.”



The R(t) plot: Understanding the parameters graphically and intuitively

What if we have both matter and a cosmological constant? So Ω4 > 0 𝒂𝒏𝒅 Ω7 > 0. Now we have a 
competition between matter decelerating the Universe and lambda accelerating the Universe. Who wins?

�̇�
𝑅

d

−
8
3
𝜋𝐺𝜌 −

1
3
Λ𝑐d = −

𝑘𝑐d

𝑅d

Go back to the Friedmann Equation:

Back in time, the universe was smaller, the 
density was higher, and gravity wins: the 
Universe starts out decelerating.

Over time, the density drops, gravity starts to 
lose, and lambda starts to dominate: late 
acceleration.

But remember, we still have to obey the 
boundary conditions (𝑅!, 𝐻!)



Universes on the (𝛀𝐦, 𝛀𝚲) plane

These different behaviors can be mapped onto an (Ω4, Ω7) 
plane to describe the resulting universes.

Remember the governing equations of cosmology. The 
Dynamics Equation:

�̈�
𝑅
= −

4𝜋
3
𝐺𝜌 +

1
3
Λ𝑐+

The Dynamics Equation shows that Λ (acceleration) works in 
the opposite sense of 𝜌 (deceleration) in determining the 
expansion history.

The Dynamics Equation solves to the Friedmann Equation:

�̇�
𝑅

+

−
8
3𝜋𝐺𝜌 −

1
3Λ𝑐

+ = −
𝑘𝑐+

𝑅+

The Friedmann Equation shows that Λ and 𝜌 work together in 
determining the curvature.



Ages and Lookback times

In all universes, redshift tells you the relative size of the Universe at that redshift: R = ⁄1 1 + 𝑧 . 
But the connection between redshift and time is different in different cosmologies. 

• Age: How old the universe was at a given redshift: 𝑡(𝑧)
• Lookback time: How far back in the past are we looking at a given redshift: 𝑡! − 𝑡(𝑧)

For 𝐻! = 72 km/s/Mpc ⇒



Ages and Lookback times

In all universes, redshift tells you the relative size of the Universe at that redshift: R = ⁄1 1 + 𝑧 . 
But the connection between redshift and time is different in different cosmologies. 

• Age: How old the universe was at a given redshift: 𝑡(𝑧)
• Lookback time: How far back in the past are we looking at a given redshift: 𝑡! − 𝑡(𝑧)

Here it is in relative 
terms, i.e., fraction of the 
Universe’s current age.

In general:
𝑧 = 1: ≈ halfway back
𝑧 = 3: ≈ 85% back

(JWST seeing things at
𝑧 > 10: ≈ 95% back!!!)



The Big Bang

The Friedmann Eqn shows that the universe must be expanding from a very dense and 
hot initial state. 

(Fred Hoyle was skeptical of this notion and in 1949 referred to it derisively in a BBC radio 
interview as “The Big Bang”. The name stuck.)

Remember, though, the Big Bang is not an explosion of material into space, its an 
expansion of space, carrying material with it.

A dense hot object emits blackbody radiation, which peaks at a temperature given by 
Wien’s law:

𝜆"@AB =
0.29 𝑐𝑚
𝑇 (𝐾)

As the Universe expands, this blackbody spectrum is redshifted, but keeps the blackbody shape with a temperature that 
scales inversely with size: 𝑇 ∼ ⁄1 𝑅.

We say the Universe cools as it expands, and we should see this redshifted light from the Big Bang coming from all directions.

Fred Hoyle



The Big Bang, nucleosynthesis, and the microwave background

1948: George Gamow and his student Ralph Alpher show that in the early 
universe the temperature and density would be right to fuse hydrogen 
into helium, at about the right He:H abundance ratio. They called this “Big 
Bang Nucleosynthesis” and added Hans Bethe to the study, writing the 
famous “𝛼𝛽𝛾 paper”. 

Necessary conditions: 𝑇CCD ≈ 10E𝐾, 𝜌CCD ≈ 10') gm/cm3.

Since density scales inversely with volume (𝜌 ∼ 𝑅',), given the current density of the Universe (𝜌!), they worked out 
that this would happen when the Universe was at a scale factor of 

𝑅CCD ≈ ⁄𝜌! 𝜌CCD ⁄G , ≈ 3×10'E

And if 𝑇~ ⁄1 𝑅, the Universe today should have a temperature of about 

𝑇! ≈ 𝑇CCD ⁄𝑅CCD 𝑅! ≈ 3 K

A 3K blackbody peaks at microwave wavelengths, so today’s universe should be bathed in the microwave background.

https://journals.aps.org/pr/abstract/10.1103/PhysRev.73.803


The Big Bang, nucleosynthesis, and the microwave background

So in 1948, the microwave background was predicted but not yet observed.

Early 1960s: Princeton scientists were developing a new microwave/radio observatory to search for these cosmic 
microwaves, when suddenly....

...they get a call from AT&T Bell Laboratories.

1964: Arno Penzias and Robert Wilson

Bell Lab engineers working on a radio antenna to communicate with 
the new Telstar satellites.

Report a persistant all-sky “hiss” in their equipment: the discovery of 
the cosmic micowave background (CMB).

Penzias & Wilson



The cosmic microwave background (CMB)

The CMB is a perfect blackbody with a temperature of 2.726 K.

COsmic Background Explorer (COBE)
1989-1993



The cosmic microwave background (CMB)

Remember what an all-sky map of starlight looks like....

all-sky optical map



The cosmic microwave background (CMB)

The CMB is a perfect blackbody with a temperature of 2.726 K. 
The all-sky CMB map is perfectly smooth (± 0.01 K).

all-sky microwave map

2.716 K                                2.726 K                                  2.736 K

Cosmologists need



The cosmic microwave background (CMB)

The CMB is a perfect blackbody with a temperature of 2.726 K. 
The all-sky CMB map is perfectly smooth (± 0.01 K).
Well, almost perfectly smooth  (± 0.0003 K) COBE all-sky microwave map (1992)



The cosmic microwave background (CMB)

What are we actually seeing?

This is light from the very early Universe, redshifted into microwave 
frequencies.

In the hot, dense early Universe, everything was ionized, lots of free 
protons and electrons. Photons couldn’t travel very far before being 
scattered by the electrons, so the Universe was opaque.

But the Universe is expanding and cooling, and at some point the temperature drops low enough that electrons and protons 
can bind together to form bound atoms (“re-combination”). At this point there are no more free electrons, and photons can 
travel freely: the Universe becomes transparent.

This happens when the temperature drops to ≈ 3000 K, which corresponds to a redshift of z ≈ 1000, or an age of ≈ 350,000 
years after the Big Bang. We cannot “look back” to earlier times, because the Universe was opaque earlier than this.

The small temperature fluctuations correspond to regions of higher or lower mass density: the “lumps and bumps” of mass 
that will grow up to be galaxies and galaxy clusters: the large scale structure we see today.



1970s − 80s: The rise of the flat matter-dominated Universe

Cosmologists were faced with several problems, two of which were particularly difficult

The Smoothness Problem: The fact that the temperature of the CMB is so uniform ( ⁄∆𝑻 𝑻 ≈ 𝟏𝟎'𝟓) violates causality. 

Two widely seperated patches of the CMB were too far apart – even when the Universe was much smaller − to be causally 
connected at that time: 𝐷 > 𝑐𝑡

So how would they know to have precisely the same temperature?

𝐷 > 𝑐𝑡



1970s − 80s: The rise of the flat matter-dominated Universe

Cosmologists were faced with several problems, two of which were particularly difficult

The Flatness Problem: The Friedmann equation tells us that Ω4 changes with time as the Universe expands. The only 
universe that doesn’t happen in is an Ω4 = 1 universe.

If Ω4 was slightly different from 1 in the early universe, it would be wildly different now:

Ω4 @ 𝒛 = 𝟏𝟎𝟎𝟎𝟎 Ω4 𝐭𝐨𝐝𝐚𝐲
1.000000 1.0000

1.000101 100

0.989972 0.01

Observational estimates of Ω4 were in the range of 0.3 − 0.8.

The only likely way the Universe would have Ω4 so close to 1 today 
is for it to have been precisely = 1 at early times.

Why would that be? Why would the universe be so precisely flat?



courtesy Astronomy magazine

1970s − 80s: The rise of the flat matter-dominated Universe

To fix the flat/smooth problems, in the late 1970s the theory of inflation was proposed.  

In the very early universe, the universe was much smaller than the Friedmann Equation would predict. It was so small that 
the entire Universe was in causal contact at early times. The entire Universe was homogeneous and smooth.

🤯

Then, magically, the Universe inflated at an incredible 
rate! Those regions that were in causal contact were 
suddenly inflated so far apart that they are no longer in 
causal contact.

When? How fast? At 𝑡 = 10',) seconds, the early 
Universe inflated by a factor of ≈ 10)! on a timescale of 
≈ 10',* seconds.

Why? Who knows? One possibility: this is the moment 
when strong nuclear force seperated from the 
electroweak force. This phase transition released energy 
that drove inflation. But there are other theories, we 
don’t know for sure. Go ask the physicists.....

https://astronomy.com/magazine/news/2021/01/the-beginning-to-the-end-of-the-universe-inflating-the-universe


1970s − 80s: The rise of the flat matter-dominated Universe

Inflation fixes many problems:

• Smoothness: the early universe was much smaller before 
inflation, and everything was in causal contact. So no 
surprise that the CMB has almoste exactly the same 
temperature everywhere.

• Flatness: The inflationary expansion was so big (a factor of 
1050) that any curvature is essentially flattened out.

So the natural and expected cosological model was the 
Standard Cold Dark Matter (SCDM) model, as follows:

• The Universe is flat
• The Hubble constant was 𝐻! = 70 ± 20 km/s/Mpc
• There wasn’t much normal matter : ΩI ≈ 0.05 or so
• We knew dark matter existed (galaxy rotation curves, galaxy 

cluster dynamics, etc), and plausibly would provide enough 
“missing mass” to get Ω4 = 1.0

• So no need for any crazy cosmological constant: Ω7 = 0.0

You are here



The age of the flat matter dominated universe

Using the Friedmann Equation, we can integrate R(t) for any combination 
of H!, Ω:, Ω7 to work out the age of the Universe. Depending on these 
parameters, the math can be messy or non-analytic.

There is one case in which it is simple − a flat (𝑘 = 0), matter-only 
universe: Ω: = 1.0, Ω7 = 0.0

�̇�
𝑅

d

−
8
3
𝜋𝐺𝜌 −

1
3
Λ𝑐d = −

𝑘𝑐d

𝑅d

This integrates to 

𝑅 𝑡 = 6𝜋𝐺𝜌1 ⁄G ,𝑡 ⁄+ ,

Which you can (and will!) solve to get

𝑡! =
2
3
1
𝐻!

= 9.3 𝐺𝑦𝑟



Possibilities to fix this crisis:

• (Ignore the result) Maybe globular cluster ages are wrong

• (Blame someone else) Maybe our estimate of the Hubble constant is wrong
If 𝐻! = 50 km/s/Mpc, 𝑡! = 13 billion years.

• (Believe the astronomical data) Maybe there’s less mass (Ω: < 1.0)
• If Ω: = 0.3, 𝑡! = 11.5 billion years (barely, maybe works)
• If Ω: = 0.0, 𝑡! = 14.0 billion years (ok, that works, but.... no matter of any type?)
• And – ack – the Universe wouldn’t be flat!

• (Get wild) Maybe we have to consider adding a cosmological constant (Ω7 > 0.0)
An accelerating Universe is older

The “Cosmological Crisis” of the early 1990s

By the late 1980s, age estimates for globular clusters were 
becoming more and more secure: 9 − 12 billion years old.

But the age of a flat, matter-only universe is 9.3 billion years. 
How can globular clusters be older than the Universe?



Cosmological parameter constraints

Estimates of 𝐻! are getting quite accurate, ruling out the low 𝐻!
arguments. Since globular cluster ages are still old

Ω: ≪ 1, or Ω7 > 0

The surveys for matter suggest the universe is less dense than 
needed to flatten the universe (𝜌 > 𝜌123/):

Ω: ≈ 0.2 − 0.7

Are you 
really here?



Meanwhile, better data began coming in for the cosmic microwave background (CMB)

Microwave observatories (ground and balloon) began getting images of the microwave background at higher resolution, 
seeing the temperature fluctuations on smaller scales.

This allowed a new test of the Universe’s curvature.

Microwave sky (COBE 1992)

Boomerang experiment (1999)



Using the CMB to probe the curvature of the Universe

Imagine looking at an object of fixed physical size (a “standard rod”) under different spatial geometries. Since straight 
lines curve differently under different spatial geometries, an object of fixed physical size will have different angular sizes 
under different geometries.

positive curvature,                                   spatially flat                                   negative curvature,
larger angular size                                                                                            smaller angular size

So if you know the physical size of the object, you can predict the different angular sizes for different types of curvature.

In a hot dense medium (like the early universe) pressure waves that grow the overdensities of mass move at the sound 
speed, which only depends on density and temperature. So the lumps in the CMD will have a characteristic size given by 
𝑑 = 𝑐% × 𝑡JKC ≈ 65 Mpc in any universe. A standard rod!
𝑐! :  sound speed
𝑡"#$ :  age of the universe at the time of the CMB



Using the CMB to probe the curvature of the Universe

The observed CMB matches the expectation for a spatially 
flat Universe!

Spatially flat: Ω: + Ω7 = 1

So the CMB insists the Universe is flat.

Globular clusters insist the Universe is old.

Surveys of matter in the universe insist Ω: < 1.

The cosmological constant is crazy talk.

Something has to give.....

positive                            flat                               negative
curvature                        space                          curvature

Observed CMB

Simulated CMBs under 
different spatial curvatures ⇒



Cosmological parameter constraints

Estimates of 𝐻! are getting quite accurate, ruling out the low 𝐻!
arguments. Since globular cluster ages are still old

Ω: ≪ 1, or Ω7 > 0

The surveys for matter are getting better, and continue to 
support a low density universe

Ω: ≈ 0.2 − 0.5

The fluctuations in the CMB continue to demand a flat universe

Ω: + Ω7 = 1

Maybe you 
aren’t here?



Measuring the shape of space: the “Redshift-Distance Test”

The apparent brightness of high-redshift objects is different in 
different cosmologies, due to:

• The curvature of space (the ⁄1 𝑑+ effect depends on 
curvature)

• The expansion history of the Universe (affects how 𝑧 ⟶ 𝑑)

These can be calculated for difference universes to work out the 
effective distance modulus.

• locally, we had: 𝑚 −𝑀 = 5 log 𝑑 − 5
• cosmologically we have: 𝑚 −𝑀 = 5 log𝐷L − 5

where we define Luminosity distance:
𝐷L = 𝑓(𝑧, 𝐻!, 𝛺4, 𝛺;)

So if we have a type of object with a fixed, known luminosity (a 
”standard candle”) we can measure its apparent magnitude at 
different redshifts and see which line it falls on.

Requirements for our standard candle:
• Needs to be a bright object
• Needs to be a precise, fixed luminosity

fainter ↑



Are they “standard” enough?

Calibration from Riess+16

BUT

• Type Ia SNe are rare.
• You have to find them.
• You have to make sure they aren’t 

a different type of SNe.
• And you have to hope Type Ia SNe

at high redshift (in early universe) 
aren’t different from the ones 
nearby!

Type Ia supernovae as standard candles

Remember Type Ia SNe: accreting white dwarfs that detonate when they hit the 
Chandrasekhar mass of ≈ 1.4 𝑀⨀.  Their peak magnitude should be similar in 
all cases.

𝑀C = −19.26 ± 0.16

https://ui.adsabs.harvard.edu/abs/2016ApJ...826...56R/abstract


Supernovae Cosmology Project

1. Take a deep, wide field image of a patch of sky, 
containing hundreds of galaxies.

2. Wait a few weeks, do it again. Look for differences: a 
possible supernova!

3. Take a spectrum of the supernova, make sure it 
actually is a Type Ia.

4. Take many images of the object over time to work out 
its light curve and derive its peak apparent magnitude.

5. Do this many times to build up the dataset.



Supernovae Cosmology Project

1. Take a deep, wide field image of a patch of sky, 
containing hundreds of galaxies.

2. Wait a few weeks, do it again. Look for differences: a 
possible supernova!

3. Take a spectrum of the supernova, make sure it 
actually is a Type Ia.

4. Take many images of the object over time to work out 
its light curve and derive its peak apparent magnitude.

5. Do this many times to build up the dataset.

Type Ia SN light curve
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And the answer is.....

...not what people expected!

Ω: = 0.25, Ω7 = 0.75

The same result was obtained seperately and 
nearly simultaneously by two different 
research groups, and has been subsequently 
verified by several others.

𝑚
−
𝑀

Riess+07

Dotted Line:
Ω: = 0.29, Ω7 = 0.71



Cosmological parameter constraints

Estimates of 𝐻! are getting quite accurate, ruling out the low 𝐻!
arguments. Since globular cluster ages are still old

Ω: ≪ 1, or Ω7 > 0

The surveys for matter are getting better, and continue to 
support a low density universe

Ω: ≈ 0.2 − 0.5

The fluctuations in the CMB continue to demand a flat universe

Ω: + Ω7 = 1

Supernovae cosmology shows acceleration:

Ω7 − Ω: ≈ 0.4

Concordance cosmology: Ω: ≈ 0.3, Ω7 ≈ 0.7

You are 
definitely
not here!

You are 
now here!



The Cosmological Constant, Lambda, Dark Energy : time to take it seriously

Back to 1919: Einstein introduces the cosmological constant to keep the Universe static: But he threw it out once Hubble 
had demonstrated the Universe was not static. Now it’s back.

Dynamics Equation Friedmann Equation
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𝑘𝑐+

𝑅+

𝜌 decelerates the Universe
Λ accelerates the Universe

𝜌 and Λ work together to set 
the shape of space.

The cosmological constant Λ acts like an energy (”dark energy”) providing an outwardly accelerating pressure, but 
working with matter to curve space. 

(Remember Einstein: 𝐸 = 𝑚𝑐+, so space responds to the matter-energy equivalency....)

But.... what is it?



Dark Energy: We really don’t know what it is.

Simplest idea is that it is the energy density of empty space, perhaps due to virtual particles. As space expands, there is 
more space and so dark energy continues to grow in dominance compared to matter.

Virtual Particles from the Heisenberg Uncertainty Principle

Remember the Heisenberg Uncertainty Principle : ∆𝐸∆𝑡 = ℏ
And use 𝐸 = 𝑚𝑐+ to rewrite it as ∆𝑚∆𝑡 = ⁄ℏ 𝑐+

On small enough scales, the amount of mass or energy in a vacuum is uncertain. Particles can 
pop in and out of existence, being created and then almost instantly annihilated, on length-
and time-scales that are unobservable.

• Theoretical estimate of energy density due to “virtual particles”:  ≈≈≈ 10GGG J m−3

• Observational measurement of the energy density associated with Λ : = 6×10'G! J m−3

Only off by 120 orders of magnitude!

More work is needed.



Meanwhile, better data began coming in for the cosmic microwave background (CMB)

COBE all-sky microwave map (1992)



Graphics from New Scientist

COBE all-sky CMB map (1992)

https://paldhous.github.io/CMB/


Graphics from New Scientist

WMAP all-sky CMB map (2003)

https://paldhous.github.io/CMB/


Graphics from New Scientist

Planck all-sky CMB map (2013)

https://paldhous.github.io/CMB/


Graphics from New Scientist

WMAP zoomed in (2003)

https://paldhous.github.io/CMB/


Graphics from New Scientist

Planck zoomed in (2013)

https://paldhous.github.io/CMB/


Satellite cosmic microwave background measurements: WMAP (mid 2000s) and Planck (mid 2010s)

COBE all-sky microwave map (1992)



Parameter Value

𝐻! 67.7 km/s/Mpc

Ω4,! 0.31

Ω7,! 0.69

ΩIA2$NO,! 0.049

Satellite cosmic microwave background measurements: WMAP (mid 2000s) and Planck (mid 2010s)

Planck all-sky microwave map (2018)

The structure of the CMB on 
smaller scales is sensitive to 
other cosmological parameters 
(𝐻!, Ω4, Ω7, ΩIA2$NO, ...). 
(More on this in ASTR 328!)

The most recent estimates 
(Planck 2018) give:



𝐻! ≈ 72 ⁄𝑘𝑚 𝑠 /𝑀𝑝𝑐
Ω4,! ≈ 0.3
Ω7,! ≈ 0.7

.  

The (Basic) Cosmological Parameters: Best estimates

Ω! = 1 𝑡! = 13.6 Gyr

Remember, the parameters change with rme as the
Universe expandsΩ4 starts at 1 (“matter dominated”), but 
drops over as the Universe expands and the density drops.

Ω7 starts at 0 since matter dominates at early times, but 
rises over as the Universe expands and the density drops.

Total Ω = 1 always: a spatially flat universe stays flat. 
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Ω4,! ≈ 0.3
Ω7,! ≈ 0.7
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The (Basic) Cosmological Parameters: Best estimates

Ω! = 1 𝑡! = 13.6 Gyr

Remember, the parameters change with rme as the
Universe expandsΩ4 starts at 1 (“matter dominated”), but 
drops over as the Universe expands and the density drops.

Ω7 starts at 0 since matter dominates at early times, but 
rises over as the Universe expands and the density drops.

Total Ω = 1 always: a spatially flat universe stays flat. 



The Growth of Structure



The Early Universe: after inflation

Universe is small, dense, very hot, and filled with elementary particles. At these energies we get pair production: particles 
and antiparticles being destroyed and reforming.

For example, electrons (𝑒'), positrons (𝑒P), and gamma rays (𝛾):

𝑒! + 𝑒" ⟺ 𝛾 + 𝛾
annihilation ⇒
⇐ creation

and similiarly for other particles.

As the Universe expands, gamma rays are being redshifted and losing energy, and after a few micro-seconds, they don’t have 
enough energy to create particles. But particles can still be destroyed by annihilating with their anti-particles, so in a flash
we lose all our matter, converting it via annihilations into high energy radiation (destined to be redshifted to form the CMB).

OK, we don’t lose all the matter, some must have survived. To match the total matter the 
amount of mass in the Universe today with the number of CMB photons we see, for every 
109 anti-particles there must have been 109+1 particles: the matter-antimatter asymmetry.

For every 109 annihilations, one unpaired particle survives. Ask the physicists about that!



Big Bang Nucleosynthesis: Cooking up elements

Now we have the building blocks for the elements: protons (𝑝), neutrons (𝑛), electrons (𝑒'). 
The temperature and density is high, but dropping fast as the Universe expands. If we act 
quick, we might be able to drive nuclear fusion.

Step 1: Assemble your ingredients

At high energies (𝑡 < 1 second), interactions are transforming particles back and forth:

𝑛 ⟺ 𝑝 + 𝑒" + '𝜈%
The particles are in thermal equilibrium, so that the proton-neutron ratio is given by the Boltzmann equation:

𝑁&
𝑁'

= 𝑒 ⁄"∆* +, = 𝑒 ⁄"(.!".")0# +,

at 𝑡 ≈ 1 second, T ≈ 10G! K, so the ratio is ⁄𝑁O 𝑁" = 0.223. Below that temperature, those reactions stop and the ratio is 
frozen in.

But it is too hot for sustained fusion, so that ratio is maintained: for every 1000 protons, there are 223 neutrons.

neutrino



Big Bang Nucleosynthesis: Cooking up elements

Now we have the building blocks for the elements: protons (𝑝), neutrons (𝑛), electrons (𝑒'). 
The temperature and density is high, but dropping fast as the Universe expands. If we act 
quick, we might be able to drive nuclear fusion.

Step 2: Make a mess and spill your ingredients (1000 protons, 223 neutrons).

So for every 1000 protons, there are 223 neutrons, but we are waiting for things to cool.

But free neutrons are unstable and undergo beta decay:

𝑛 ⇒ 𝑝 + 𝑒* + :𝜈F

with a half-life of about 10 minutes. So for every 10 minutes you wait, you lose half of the neutrons you had, converting 
them to protons.

To begin fusion, you need the temperature to drop from T ≈ 10G! K to T ≈ 10E K, and that takes about 4 minutes, at which 
point the neutron-to-proton ratio has dropped from ⁄𝑁O 𝑁" = 0.223 to ⁄𝑁O 𝑁" = 0.164.

So by the time you start fusion, your original mix has turned into 1051 protons, there are now 172 neutrons.



Big Bang Nucleosynthesis: Cooking up elements

Now we have the building blocks for the elements: protons (𝑝), neutrons (𝑛), electrons (𝑒'). 
The temperature and density is high, but dropping fast as the Universe expands. If we act 
quick, we might be able to drive nuclear fusion.

Step 3: Start cooking – nuclear fusion! (1051 protons, 172 neutrons)

At 10E K, the oven is ready, and we begin fusion.

1. Protons and neutrons fuse to form deuterium and release a 
gamma ray:

𝑝 + 𝑛 ⟺ �
d𝐻 + 𝛾

2. Deuterium fuses to form tritium and a proton:

�
d𝐻 + �

d𝐻 ⟺ �
�𝐻 + 𝑝

3. Tritium and deuterium fuse to form helium and a proton:

�
�𝐻 + �

d𝐻 ⟺ d
�𝐻𝑒 + 𝑝

Net result: convert 4 protons into 1 helium nucleus.

(But note: the reaction chain is different from how the 
Sun and stars do it!)



Big Bang Nucleosynthesis: Cooking up elements

Now we have the building blocks for the elements: protons (𝑝), neutrons (𝑛), electrons (𝑒'). 
The temperature and density is high, but dropping fast as the Universe expands. If we act 
quick, we might be able to drive nuclear fusion.

Step 4: Taste the dish – how did it turn out?

If the fusion process is 100% efficient, at the end of this process we have made all the Helium
we possibly could have. How much Helium is that?

We started fusion with 1051 protons and 172 neutrons. Since a Helium nucleus has 2 protons and 2 neutrons, we can make a 
total of 172/2 = 86 Helium nuclei. They would use up 172 protons as well, leaving you with 1051 − 172 = 879 protons.

This means the fraction of Helium by mass is given by:

𝑌 =
4×86

1×879 + 4×86 = 0.28

Which is pretty close to the primordial helium abundance (measured in low metallicity stars) of 𝑌 ≈ 0.23 − 0.24.

⇒ Most of the Helium in the Universe was made during the Big Bang, and not inside stars!



BBN constraints on baryonic matter density (𝛀𝐛).

The efficiency of BBN depends on the density of baryonic (normal) 
matter in the Universe: 

Higher density ⇒ more collisions ⇒ more efficient fusion
⇒ More helium, fewer leftovers (e.g., deuterium).

Lower density ⇒ fewer collisions ⇒ less efficient fusion
⇒ Less helium, more leftovers.

The primordial abundances of helium, deuterium, and a few other 
of the “light elements” depend on the baryon density of the 
universe

Comparing to observed values shows that

ΩD ≈ 0.04

And since Ω4 ≈ 0.25 − 0.3 ≫ ΩI, dark matter cannot be made of 
normal baryonic matter.



The transition from radiation dominated era to matter dominated era

After BBN, the universe was filled with matter and radiation. The radiation energy density dominates that of the mass, and 
we are in the radiation dominated era. But radiation density drops faster than mass density as the expansion continues. 

Mass energy density:

𝑈4A//@2 =
𝑀𝑎𝑠𝑠 × 𝑐+

𝑉𝑜𝑙𝑢𝑚𝑒

𝑈4A//@2 ~ 𝑅',

Radiation energy density:

𝑈2A- =
𝑁"#N/NO × 𝐸"#N/NO

𝑉𝑜𝑙𝑢𝑚𝑒

𝑈2A- ~
𝑅'G

𝑅, ~ 𝑅
'*

At 𝑡 ≈ 55,000 years (𝑇 ≈ 9000 K), radiation energy 
density drops below mass energy density, and we enter 
the matter-dominated era.

Time for gravity to do its thing!

Photon energies 
drop as they get 
redshifted!



Matter in the early universe

Two forms of matter:
• Baryonic (normal matter: protons, neutrons; including electrons), 10% – 15% of total mass
• Non-baryonic dark matter (????), 85% − 90% of total mass

Focus now on baryonic matter.

Before recombination (𝒕 ≲ 𝟑𝟓𝟎, 𝟎𝟎𝟎 years): 

Photons scatter off of free electrons (Thompson scattering), 
providing photon pressure which prevents baryons from falling into 
gravitational potential wells. They are “suspended”.

After recombination (𝒕 > 𝟑𝟓𝟎, 𝟎𝟎𝟎 years)

Free electrons combine with free protons to form hydrogen atoms, 
no more Thompson scattering, no more photon pressure. Baryons 
can start falling into potential wells.

baryons



Matter in the early universe

Two forms of matter:
• Baryonic (normal matter: protons, neutrons; including electrons), 10% – 15% of total mass
• Non-baryonic dark matter (????), 85% − 90% of total mass

In the early universe (𝑡 ≲ 350,000 years) the Universe is too hot for bound hydrogen to form, so all the baryonic matter is 
ionized: free protons and electrons, with some helium nuclei and other leftovers from BBN. All that ionized baryonic 
matter is mixed with photons and dark matter.

Remember: photons and electrons easily scatter off one another (Thompson scattering), which is why the early universe is 
opaque: Light cannot free stream.

But that also means that photon pressure keeps the baryonic matter from 
gravitationally contracting. 

Imagine an overdense lump of the universe at this time. The excess gravity 
is wanting to pull more mass inwards: gravitational contraction. But 
photon pressure keeps the electrons keep the from falling inwards: they 
stay “suspended” (along with the protons, which are electrostatically 
coupled to the electrons).

baryons



Recombination

At 𝑡 ≈ 350,000 years (redshift 𝑧 ≈ 1000), the temperature drops below T ≈
3,000 K which is cool enough for protons and electrons to combine to form bound 
hydrogen atoms.

No more free electrons, no Thompson scattering of photons. The universe 
becomes transparent, the photon pressure goes away, and suddenly baryonic 
matter can start to collapse under gravity.

The Growth of structure

Because matter and radiation are coupled before recombination, the temperature fluctuations in the cosmic microwave 
background are related to the baryonic density fluctuations at recombination: at 𝑧 ≈ 1000, ⁄∆𝑇 𝑇 ≈ ⁄∆𝜌 𝜌 ≈ 10').

Hubble (and now JWST) also detect lots of galaxies forming by 𝑧 ≈ 5. A galaxy is a very strong overdensity: ⁄∆𝜌 𝜌 ≈ 10). 

This is orders of magnitude of growth in density in less than a billion years. Can gravity work that fast?



Using the Friedman Equation to study structure formation

Remember, at early times the density is high enough that matter 
dominates over lambda. And also, observations told us that universe is 
spatially flat and stays flat. So to study the universe at these times, we 
can use the Friedman equation for a flat (𝑘 = 0) matter dominated 
(Λ = 0) universe.
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The Growth of structure

Because matter and radiation are coupled before recombination, the temperature fluctuations in the cosmic microwave 
background are related to the baryonic density fluctuations at recombination: at 𝑧 ≈ 1000, ⁄∆𝑇 𝑇 ≈ ⁄∆𝜌 𝜌 ≈ 10').

Hubble (and now JWST) also detect lots of galaxies forming by 𝑧 ≈ 5. A galaxy is a very strong overdensity: ⁄∆𝜌 𝜌 ≈ 10). 

This is orders of magnitude of growth in density in less than a billion years. Can gravity work that fast?

Hubble parameter –
changes with time. Not 
Hubble constant (H0)



Evolution of density fluctuations

To describe the Universe as a whole, start with the Friedman equation for a 
flat (𝑘 = 0) matter dominated (Λ = 0) universe.

Now consider a small piece of the universe (“a bubble”) which has a higher-
than-average density: an overdensity. In that region, space is not flat, 
because it has more matter. So it gets its own Friedmann equation:

Now subtract the first equation from the second to get

or, collecting terms:
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Evolution of density fluctuations (continued)

Now lets define a quantity 𝛿 which is the fractional overdensity of the 
bubble. 𝛿 = 0 is average density (i.e., no overdensity), 𝛿 = −1 is absolute 
emptiness (a strong underdensity), while 𝛿 ≫ 1 is a strong overdensity.

Putting that into our equation for the difference between 𝜌& and �̅�

We get

And if we only pay attention to evolving quantities (𝑅 and 𝜌) we can think 
about how 𝛿 evolves:

So the fluctuation grows as 𝑅 grows. But we also know that scale factor and 
redshift are related by 𝑅 = ⁄1 (1 + 𝑧), so rewrite this in terms of redshift: 𝛿 ~ (1 + 𝑧)*�

average density 
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excesss density 
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Evolution of density fluctuations (continued)

So if 𝛿 ~ (1 + 𝑧)'G, we can relate the density fluctuations at two 
different times (“initial” and “final”) by the expression:

𝛿£
𝛿¤
=

1 + 𝑧 ¤
1 + 𝑧 £

If we start with 𝛿3 ≈ 10') at 𝑧 ≈ 1000, by a redshift of 𝑧 ≈ 5, the 
overdensity should have grown to be:

𝛿. = 𝛿3
1 + 𝑧 3

1 + 𝑧 .
= 10')

1001
6 ≈ 0.002

Oops! That’s off by many orders of magnitude. By themselves, these 
fluctuations in baryonic mass aren’t strong enough to grow into 
galaxies and galaxy clusters we see at high redshift.

What have we forgotten? Dark matter. 

Initial values: 𝛿¤ ≈ 10*¥ at 𝑧¤ ≈ 1000

Final values: 𝛿¤ ≈ 10¥ at 𝑧£ ≈ 5



Dark Matter and Structure Formation

Non-baryonic dark matter does not interact with other particles or photons in 
any way but through gravity.  

Dark matter overdensities could grow freely well before recombination, and 
there’s more dark matter than baryonic matter. 

So strong gravitational potential wells were already in place for the baryons to 
collapse into once recombination occurs.

Once an overdense region gets to 𝛿 > 1, its dense enough to govern its own 
growth, and it decouples from the overall expansion of the Universe. It
gravitational collapse happens roughly on a free-fall timescale:

𝑡.. ≈ ⁄1 𝐺𝜌

baryons

Object Density (𝝆)
𝑴⨀ 𝒑𝒄'𝟑

Overdensity 
(𝜹)

Globular Cluster 100 109

Galaxy 10-3 104

Galaxy Cluster 10−5 100

Note: Low mass 
things have higher 
densities and are the 
first to form! Massive 
things form later.



Flavors of Dark Matter

Baryonic Dark Matter

Examples: Faint brown dwarfs, planets, diffuse gas clouds, free-floating space donkeys

Two fatal problems we have already discussed:

• Can’t form structure fast enough because they can’t grow until after recombination.

• Ruled out by big bang nucleosynthesis arguments (ΩI ≪Ω4)

Baryonic dark matter models do not work.

Non-baryonic dark matter

Classified by the characteristic random velocities (energies):

• Hot dark matter: particles moving at relativistic speeds 
• Cold dark matter: particles moving at much slower speeds



Flavors of Dark Matter

Hot Dark Matter: Particles moving at high relativistic speeds
Example: neutrino

In the early universe, HDM particles moving at relativistic speeds will quickly escape from low mass density fluctuations. 
These fluctuations will no longer be bound, and will not collapse. The only fluctuations that survive are things with 
masses ≳ 10G) 𝑀⊙ (massive galaxy cluster scales). These take a long time to collapse, since they are low density.

Once they collapse, and the density increases, smaller structures can start to collapse inside them, a process called 
“fragmentation”. (The way individual stars form inside a collapsing gas cloud)

So in Hot Dark Matter models:

• Structure forms “top down”: big things first, then smaller and smaller things.
• Structure forms slowly: Have to wait for the big low density things to collapse before structure can form.
• Galaxies form late in the Universe’s history.

This is not what we see – hot dark matter models do not work!



Flavors of Dark Matter

Cold Dark Matter: Particles moving at low speeds 
Example: NO KNOWN OBJECTS

In the early universe, CDM particles move much more slowly and can be bound into low mass “halos” of dark matter. 
Once recombination occurs, baryons collapse into these low mass halos first, then over time low mass halos (of dark 
matter and baryons) continue to merge on larger and larger size scales: Hierarchical formation.

So in Cold Dark Matter models:

• Structure forms “bottom up”: small things form first, then merge together over time to form bigger things.
• Structure forms early: As soon as recombination hits, structure can begin forming quickly
• Galaxies form early, galaxy clusters form later.

This is a much better model for what we see: galaxies forming in the early Universe, galaxy clusters growing at later 
times.



Hot Dark Matter                                Tepid Dark Matter                            Cold Dark Matter

Early 
Universe
⟺

Today
⟺

Simulations of structure
formation
(courtesy ITC/Zurich)

HDM: very little 
structure early;

CDM: much more 
early structure.

HDM: no dwarf 
galaxies at late times.

CDM: many more 
low mass galaxies at 
late times.



Structure Formation under Cold Dark Matter models

Connecting observations of large scale structure..... ...to predictions from theoretical models



The formation of structure

Small fluctuations in the 
mass density at early time 
grow in strength due to 
gravity pulling mass 
together.

Mass forms filamentary 
structure, collects in dense 
regions at the intersections 
of filaments.

Large voids also grow as 
matter empties out of 
them into the filaments.

Dark matter simulation 
from the Millenium 
Simulation (Springel+05)

https://wwwmpa.mpa-garching.mpg.de/galform/data_vis/
https://wwwmpa.mpa-garching.mpg.de/galform/data_vis/


Forming Galaxy Clusters

In cold dark matter models, clusters form 
hierarchically: small lumps merge together to form 
bigger lumps, which merge to form even bigger 
lumps, etc.

Clusters grow over time, and the rate at which 
they grow depends on the density of the universe 
and its expansion history.

Dark matter simulation from the Millenium 
Simulation (Springel+05)

https://wwwmpa.mpa-garching.mpg.de/galform/data_vis/
https://wwwmpa.mpa-garching.mpg.de/galform/data_vis/


Structure Formation under Cold Dark Matter models

First, just consider Universes where there is no dark energy, so Ω7 = 0.0.

The more mass there is (i.e., bigger Ω4) the more structure there is at  
present day. More mass ⇒ stronger gravity ⇒ structure grows faster.

Structure seems “right” at values of Ω4 ≈ 0.4 or so. 
But to get the age right, we want Ω4 ≲ 0.2. That’s a problem!

Ω% = 0.1 Ω% = 0.2

Ω% = 0.3 Ω% = 0.4

Ω% = 0.5
Simulated present-
day universes.

All models have 
Ω7 = 0.0

Cole+97

https://ui.adsabs.harvard.edu/abs/1997MNRAS.289...37C/abstract


Structure Formation under Cold Dark Matter models

Now, just consider flat Universes where Ω4 + Ω7 = 1.0.

At fixed Ω4, universes have much more structure than before (when we 
held Ω7 = 0).

Dark energy makes universes older, so more time for structure to grow.

Get a good match to structure and age at Ω4 = 0.3, Ω7 = 0.7

Ω% = 0.5, Ω& = 0.5 Ω% = 1.0, Ω& = 0.0

Ω% = 0.3, Ω& = 0.7 Ω% = 0.4, Ω& = 0.6

Ω% = 0.2, Ω& = 0.8Ω% = 0.1 Ω& = 0.9

Simulated present-
day universes.

All models have 
Ω4 + Ω7 = 1.0

Cole+97

https://ui.adsabs.harvard.edu/abs/1997MNRAS.289...37C/abstract


Growing Galaxies

Remember that the fluctuations in mass density traced by the microwave background have characteristics sizes of about 65 
Mpc -- much larger than galaxies and galaxy clusters. On smaller scales inside those fluctuations (and unresolved by current 
CMB data) are the fluctuations destined to grow into galaxies.

Fluctuations on smaller mass scales are stronger overdensities (𝛿 ≡ ⁄∆𝜌 𝜌).  ⇒

Low mass things form first, then merge to form large things: hierarchical assembly.

lo
g𝛿

log𝑀

𝛿 ~𝑀 ⁄*d �

Galaxies        Clusters      Large scale
Structure

Fluctuation Power Spectrum:  
More “power” (stronger 
overdensities) on smaller mass 
scales.



Hierarchical Growth of Galaxies and Merger Trees

Merger Tree:
• Time runs down the chart
• Width of branches/trunk = galaxy masses
• Branches meeting = galaxies merging.

Early times: many seperate low mass (and gas-rich) 
galaxies at high redshift.

As time goes by: ongoing mergers, star formation

Late times: Large galaxy in local universe

Questions: 

• When did this galaxy form?
• When did this galaxy’s stars form?
• What do we mean by the age of a galaxy? today

high
redshift
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Dark Matter Halo mass function

Plot the (log) number (N) of dark matter halos of 
a given mass (M) as a function of redshift (z).

As low mass galaxies merge together to form 
higher mass halos, massive halos become more 
common.

Predictions:

• massive galaxies should be rare in the very 
early universe (𝑧 > 5).

• galaxy clusters should be rare at 𝑧 > 1 (first 
half of Universe’s history).

Dwarf galaxy masses are common always

Milky Way mass 
galaxies form later 
(but still at high-z!)

Galaxy clusters 
assemble late.

Common

Rare

Very
Rare



Simulating Galaxy Evolution

Is very hard! The ingredients:

• Cosmological initial conditions
• Gravitational dynamics
• Gas hydrodynamics
• Radiation / Photoionization
• Star formation, supernovae, stellar winds
• AGN triggering, radiation, and outflows
• Stars and Stellar Evolution
• Dust absorption / extinction

Requires “High Performance Computing”

Example: The Illustris Project, international collaboration of astronomers, physicists, and computer scientists..

Largest simulations run on 8,192 compute cores, and took 19 million CPU hours (the equivalent of one computer CPU 
running for 19 million hours, or about 2,000 years

Simulations continue to get bigger and include even more physics, resolveing smaller and smaller scales, and doing so over 
larger and larger volumes. Some of the most intensive computational tasks in modern science.

https://www.illustris-project.org/


Observing Galaxies in the Early Universe

Compared to the local universe “Euclidean expectation”, if we think of moving a galaxy to higher 
and higher redshifts, cosmological effects make it

a) even fainter in apparent magnitude
b) not appreciably smaller beyond z=1.



Observing Galaxies in the Early Universe

Also, at high redshift when we observe with optical telescopes, we see 
redshifted light that was originally emitted by the galaxy in the ultraviolet.

Ultraviolet light:

• dominated by young massive stars, not the general stellar population.

• easily obscured by dust.

Galaxies look very different in the ultraviolet than they do in the visible. 

Images of nearby galaxies

Left column: Optical images
Right column: Ultraviolet images

Kuchinski+01

https://ui.adsabs.harvard.edu/abs/2001AJ....122..729K/abstract


Observing Galaxies in the Early Universe

So the combination of brightness and size effects, 
coupled with bandshifting, means that optical 
images of high-z galaxies can look very different 
from local galaxies even if they are physically 
similar!

Tend to only see the highest surface brightness 
regions and/or the star forming regions of a high 
redshift galaxy.

“Mock redshifting”

Left: True images of nearby galaxies
Middle: Simulated images at moderately high redshift
Right: Simulated images at high redshift

Kuchinski+01

https://ui.adsabs.harvard.edu/abs/2001AJ....122..729K/abstract
https://ui.adsabs.harvard.edu/abs/2001AJ....122..729K/abstract


The Hubble Ultradeep Field

• Observed in 2003-04
• Blank patch of sky 2.5 arcmin across (about 1/10th

the size of the full moon)
• ~ 1,000,000 seconds of exposure time across four 

different optical filters
• Deep enough to detect galaxies to z ~ 6-7.

Remember, the image shows all galaxies along the 
line of sight, across a range of redshifts.



Conselice 
ARAA 2014

Massive Galaxies 
in the UDF

Moderate z
0.5 < 𝑧 < 1.2

⟸

High z
2.2 < 𝑧 < 3.0

⟹

http://adsabs.harvard.edu/abs/2014ARA%26A..52..291C
http://adsabs.harvard.edu/abs/2014ARA%26A..52..291C


Galaxy populations evolve with 
time

Late-type galaxies: spirals
Early-type galaxies: E/S0

Lots of peculiar galaxies at early 
times (high redshift), products of 
interactions, mergers, and 
starbursts. Density of the Universe 
was higher, interactions common.

Spirals common across time.

Ellipticals become the dominant 
type of massive galaxy at late 
times.

Hierarchical growth shaping the 
local galaxy population observed 
today.

Conselice ARAA 2014

http://adsabs.harvard.edu/abs/2014ARA%26A..52..291C


“Downsizing”

The stellar populations of high mass 
ellipticals formed very early on.

The stellar populations of lower 
mass ellipticals formed at later times 
(but still long ago!)

Remember: the age of the stellar 
populations is not the same as the 
age of the galaxy.

The stars in today massive ellipticals 
formed long ago, in smaller galaxies, 
that merged together over time to 
build up the massive ellipticals..

Environmental density important: 
massive ellipticals are found in 
dense environments. Their stars 
formed early, mergers built the 
ellipticals quickly.

high mass ellipticals

even lower 
mass ellipticals

lower mass ellipticals

still lower
mass ellipticals

Thomas+10

http://adsabs.harvard.edu/abs/2010MNRAS.404.1775T


Inside-out Galaxy Formation

Galaxies are growing in physical size 
over time.

At high redshift galaxies are more 
compact than today.

Two likely effects:

• Star formation in outer parts of 
spirals happens more gradually, 
builds up the outer disks.

• Low mass galaxies fall in to larger 
galaxies (“accretion”) and their 
stars are stripped and left in the 
larger galaxies’ halos.

Both processes build the outer parts 
of galaxies.

Conselice ARAA 2014

http://adsabs.harvard.edu/abs/2014ARA%26A..52..291C


Star forming history of the Universe

Integrated over all galaxies, we see that 
the star formation rate of the universe 
grows quickly and peaks at 𝑧 ≈ 2 − 4, or 
a few billion years after the Big Bang.

Since them star formation has been 
slowly ramping down.

Individual galaxies may behave 
differently, of course!

After correcting for 
dust extinction

As measured

“Cosmic Dawn”“Cosmic Noon”

Cosmic Happy Hour! 🍸🍺🍷



JWST vs Hubble

JWST Hubble Space Telescope



JWST: infrared (sees emitted optical at high-z)Hubble: optical (sees emitted UV at high-z)



Hubble (11.3 days)



JWST (0.83 days)





Galaxies at the highest (yet) redshift:

• Redshifts: 𝑧 ≈ 10 − 13
• Universe age:  300 − 450 Myr
• Stellar mass: ≈ 10T − 10E 𝑀⨀
• SFR: ≈ 0.2 − 5 ⁄𝑀⨀ 𝑦𝑟
• Stellar ages: ≈ 15 − 70 Myr

Robertson+23



High redshift proto-cluster:

• Proto-cluster behind foreground cluster
• Redshift 𝑧 = 7.9
• Universe age:  650 Myr




