
X-ray data: The Chandra Source Catalog (Evans+ 2010, 2019)

A catalog of all sources detected in observations by the Chandra X-ray satellite. It is not an all-sky survey, it is simply a
list of X-ray sources detected in various Chandra observations over the years.

The catalog contains lots of information, we will only be interested in the following:

• Sky position (RA, Dec): RAIRCS, DECIRCS
• Positional uncertainty (in arcsec): r0
• Signal to noise of the detection: S/N
• X-ray Flux and upper/lower limits, measure by the Chandra ACIS detector: F90b, b_F90b, B_F90b
• X-ray hardness: HRhs

We will get this info only for objects that are

• X-ray point sources
• detected in the Chandra ACIS imaging
• with S/N > 2
• within a 0.5 degree radius around the center of each cluster

We will do this by doing using astropy’s astroquery function to pull the catalog from the Vizier data portal.

https://ui.adsabs.harvard.edu/abs/2010ApJS..189...37E/abstract
https://vizier.cds.unistra.fr/viz-bin/VizieR

Using astroquery.vizier

try:

if the datafile is already stored locally on your computer, read it from there
CHANDRA=ascii.read(cluster_name+'_CHANDRA.csv')

except:

if there is no local datafile on your computer, go get the data from Vizier
from astroquery.vizier import Vizier

get this data: RA, Dec, position accuracy, S/N, ACIS X-ray flux, fluxLL, fluxUL, hardness
get_cols=['RAICRS','DEICRS','r0','S/N','F90b','b_F90b','B_F90b','HRhs’]
select these sources: X-ray point source, detected ACIS flux, S/N > 2
use_filters={"fe":"=0","F90b":">0","S/N":">2"}

set up a Vizier query function
v=Vizier(columns=get_cols,column_filters=use_filters)
v.ROW_LIMIT=-1 # -1 means no row limit

query Vizier for objects in a 0.5 degree radius around the position
of the cluster, getting the data from catalog "IX/57" (which is the Chandra
source catalog). The [0] thing just means get the first data table, which
in our case is the only data table.
CHANDRA=v.query_region(cluster_pos,width="0.5d",catalog="IX/57")[0]

write the downloaded data to a local datafile for subsequent use
CHANDRA.write(cluster_name+'_CHANDRA.csv')
print('Wrote {}_CHANDRA.csv'.format(cluster_name))

Cross-matching catalogs

Two catalogs: A and B. For each object in catalog A, is there a match in catalog B?

Match on unique property (name or ID #): this is what we did with the SDSS data with the Photometric catalog and
the Spectroscopic catalog.

Match on angular separation: For each object in catalog A, what is the closest object in catalog B?

• Catalog A = Chandra Point Source Catalog (PSC)
• Catalog B = Our SDSS dataset of galaxies in the field of each cluster

But remember:
• By definition, there will always be a closest object B!
• The closest match may not be very close!
• The closest match may not be the correct object!

So we have to think about the how good the matches are, and not just use them blindly…

How well determined are the coordinates?

• SDSS: ≈ 1 arcsec accuracy

• Chandra: typically ≈ few arcsec accuracy
but can exceed 10 arcsec depending on
S/N and location in X-ray image

Matching catalogs by coordinates

We have two datasets: SDSS (optical) and CHANDRA (X-ray). We want to cross-match them into one dataset that contains
the optical and X-ray data for all X-ray sources. We do this by matching on position.

make a sky coordinate object for all the objects in the SDSS catalog....
sdss_coord=SkyCoord(SDSS['ra'],SDSS['dec'], unit='deg', frame='icrs')

....and for all the objects in the Chandra catalog
chandra_coord=SkyCoord(CHANDRA['RAICRS'],CHANDRA['DEICRS'], unit='deg', frame='icrs')

now for each chandra_coord, match it to the nearest sdss coord using sky coords (ra,dec)
idx lists (for each chandra source) the row number in the SDSS table that contains the
closest match.
d2d is the 2D separation between the sources (angle on the sky)
d3d is the 3D separation, which is meaningless for us, since we dont have distances
idx, d2d, d3d = chandra_coord.match_to_catalog_sky(sdss_coord)

SDSS[idx] will be a data table where each row of data is the optical properties of the object closest to the X-ray sources
listed in the CHANDRA table, in the proper row order to match the CHANDRA table.

Matching catalogs by coordinates

SDSS[idx] will be a data table where each row of data is the optical properties of the object closest to the X-ray sources
listed in the CHANDRA table, in the proper row order to match the CHANDRA table.

So we can now do a horizontal stack of the CHANDRA and SDSS[idx] to make our final data table.

now make a merged list by "horizontally stacking" the two tables: CHANDRA and SDSS[idx]
from astropy.table import hstack
CROSSMATCHED=hstack([CHANDRA,SDSS[idx]])

CROSSMATCHED is a new data table containing our final combined/matched X-ray and optical data for all X-ray sources.

One important thing: we matched on the closest objects. The closest object may still be far away, and may not really be a
good match! So we will add a column to our crossmatched dataset that says how far away the closest optical object was:

add a column that shows the separation in arcsec
CROSSMATCHED['match_sep']=d2d.arcsec

Small X-ray positional error, well determined
position.

Larger X-ray positional error, less well
determined position.

Think of the position and position error as a
“location likelihood”.

Very large X-ray positional error, much less
well determined position.

“location likelihood” is quite broad.

Happens at low flux levels or when X-ray
sources are near the edge of the X-ray field
of view.

SDSS image

Good match!

Probably a good match

Hmmm….

Nope

Probably a good match

Uh oh

Oh no

When looking at matched objects in SDSS Navigator, don’t assume the match is correct. Keep these things in mind:

• Know the separation between matched objects (match_sep)
• Know the uncertainty of the Chandra position (r0)
• Know the scale of the SDSS field of view in Navigator (click ’grid’)
• Think about how accurate the match might be!

Is the separation less than the positional uncertainty? (match_sep < r0)
(But how accurate is the positional uncertainty?)

Is the separation small? (match_sep < some_critical_value)

Are there other objects very close nearby?

