
Statistics and Modeling

Statistics is the grammar of science. 
- Karl Pearson 

There are three types of lies -- lies, damn lies, and statistics. 
- Benjamin Disraeli? Mark Twain?  

It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so. 
- Mark Twain? Yogi Berra? 

All models are wrong, but some models are useful.
- George E.P. Box

Data do not give up their secrets easily. They must be tortured to confess.
- Jeff Hopper, Bell Labs 



Random vs Systematic Error

Precision: How well can you measure a quantity? How repeatable 
is your measurement? Usually captured by “random errors.”

Accuracy: How well does your measurement actually recover the 
value you are trying to measure? Source of “systematic errors.”

Random vs Systematic is critical to understand, extremely 
hard to quantify in practice.

If you measure a value and do not give some estimate of 
uncertainty or some discussion of systematic errors, your 
measurement is nearly useless.

The 10/90 rule: you spend 10% of your time getting “the 
answer”. You spend the other 90% understanding your 
uncertainties.





Characterizing distributions
•  Moments
•  1st: Mean, x     (location)

!  Other 1st-moment indicators:
o   median (robust estimator)
o  mode

•  2nd: Standard deviation, σ   (width)
!  Other 2nd-moment indicators: 

o  Average deviation (robust estimator):
o  full-width half-maximum (FWHM)

•  3rd: Skew, s       (symmetry)
•  4th: Kurtosis, k    (shape)
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Error Propagation

If errors are gaussian and uncorrelated, we can add each error source in quadrature.
(But uncorrelated gaussian errors are often a bad assumption!)

if each measurement of X has an uncertainty 𝜎, the error in mean is given by 𝜎"̅ = ⁄𝜎 𝑁

For propagating small errors, we can use a Taylor expansion. If you are calculating some property C from measurements 
of x, y, and z: 

𝐶 = 𝑓 𝑥, 𝑦, 𝑧 	 ⟹	 𝜎#$ =
𝜕𝑓
𝑑𝑥 𝜎"

$

+
𝜕𝑓
𝑑𝑦 𝜎%

$

+
𝜕𝑓
𝑑𝑧 𝜎&

$

Example, working out the absolute magnitude of M87:  apparent mag (m) = 8.63 ± 0.04, distance (D)=16.0 ± 1.1 Mpc

• 𝑀 = −5 log 𝑑 + 5 +𝑚 = −22.4
• ⁄𝜕𝑀 𝑑𝑚 = 1
• ⁄𝜕𝑀 𝑑𝐷 = ⁄−5 𝐷 ln 10 = −2.17/𝐷
• 𝜎'$ = 1×0.04 $ + ⁄−2.17 16 ×1.1 $

• so 𝜎' = 0.15 mag but this characterizes random error, not systematic error!
it also assumes gaussian and uncorrelated errors!



Studying Correlations

Linear correlations
• single dependent variable: 𝑦 = 𝑚𝑥 + 𝑏   (fit a line)
• multiple dependent variables: z	 = 𝑚𝑥 + 𝑛𝑦 + 𝑏    (fit a plane)

Nonlinear correlations: try to linearize them!

Example #1: Exponential surface brightness of a 
disk galaxy

Raw form: 𝐼 𝑟 = 𝐼(𝑒 ⁄*+ ,

Linearized form: ln 𝐼(𝑟) = ln 𝐼( − ⁄𝑟 ℎ

In surface brightness (mags per sq arcsec):
(𝜇 = −2.5 log 𝐼 + 𝐶,	and remember 
log(x)=ln(x)/log(10))

𝜇 𝑟 = 𝜇( +
2.5
ln 10

𝑟
ℎ

Example #2: Power law form of Tully-Fisher 
relationship

Raw form: 𝐿	~	𝑉-.+-/

Linearized form: log 𝐿 = 𝛼 log𝑉-.+- + 𝐶



Characterizing a linear (or linearized) relationship:

• Dataset of 𝑁 points: 𝑥. 	, 𝑦.
• Fit a line to data: 𝑦0.1 = 𝑚𝑥 + 𝑏 
• Calculate slope, intercept, and their uncertainties: 𝑚 ± 𝜎2, 𝑏 ± 𝜎3
• Calculate root-mean-square (RMS) scatter around the fit: 𝜎4'5$ ≡ 6

7
∑ 𝑦. − 𝑦0.1(𝑥.)

$

The importance of scatter

The uncertainties on the fit tell you how well-determined the fit 
parameters are.

The scatter of the fit tells you how well, on average, individual data 
points obey the relationship.

Example: Tully Fisher Relationship ⇒

Lower fit uncertainties (𝜎2, 𝜎3) mean that the overall TF 
relationship is better-determined.

Large scatter (𝜎4'5) means any one galaxy may not perfectly 
obey TF.

fit uncertainty

scatter

Five numbers to characterize a fit: 
𝑚, 𝜎! , 𝑏, 𝜎" , 𝜎#$%



Characterizing a linear (or linearized) relationship (least squares fitting, assuming Gaussian statistics):

# make a linear fit, and calculate uncertainty and scatter 

good = <some criterion> # dont want to include bad data 

coeff, cov = np.polyfit(x[good],y[good],1,cov=True) 

coeff_err = np.sqrt(np.diag(cov)) 

print(' slope = {:.3f} +/- {:.3f}'.format(coeff[0],coeff_err[0])) 

print('intercept = {:.3f} +/- {:.3f}'.format(coeff[1],coeff_err[1])) 

polynomial=np.poly1d(coeff) 

xfit=np.linspace(x.min(),x.max()) 

plt.plot(xfit,polynomial(xfit),color='green',lw=3) 

print(' scatter = {:.3f}'.format(np.std(y[good]-polynomial(x[good]))))



Anscombe’s quartet: Fit y=mx+b and get the same r (correlation coefficient), m, b, σm, σb, σRMS  

But be careful 
with fits...



But be careful 
with fits...

Anscombe’s quartet: Fit y=mx+b and get the same r (correlation coefficient), m, b, σm, σb, σRMS  



Beware the datasaurus!

Moral of the story: ALWAYS PLOT YOUR DATA!



Modeling Uncertainty

Let’s say you have a repeated measurements of some value. How do we estimate the best value and uncertainty.

If your errors are independent and follow a Gaussian distribution:
• measure mean and standard deviation (𝑥̅, 𝜎)
• “standard error in the mean” is given by ⁄𝜎 𝑁

Is this a good assumption? Take a distribution of 50,000 measurements with 𝑥̅, 𝜎 = 0.5, 0.28, look at distribution.

(yellow: mean, red: mean +/- 1𝜎)
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Modeling Uncertainty

Let’s say you have a repeated measurements of some value. How do we estimate the best value and uncertainty.

If your errors are independent and follow a Gaussian distribution:
• measure mean and standard deviation (𝑥̅, 𝜎)
• “standard error in the mean” is given by ⁄𝜎 𝑁

What about small N? Take a distribution of 8 measurements with 𝑥̅, 𝜎 = 0.5, 0.28, look at distribution.

(yellow: mean +/- std err, red: mean +/- 1𝜎)

Moral of the story:

Assuming gaussian 
statistics is often a bad 
idea!

Gotta look at your data!



Advanced Parameter Estimation

Let’s say you have a sample of galaxies in a galaxy cluster, and you’ve measured all their luminosities. Now want to 
model the luminosity function of the cluster – the number of galaxies as a function of their luminosity, N(L).

Adopt the Schecter function: 𝑁 𝐿 = 	Φ0	𝐿U𝑒VW/W∗



Advanced Parameter Estimation

Let’s say you have a sample of galaxies in a galaxy cluster, and you’ve measured all their absolute magnitudes. Now want 
to model the luminosity function of the cluster – the number of galaxies as a function of their absolute mag, N(M).

Adopt the Schecter function: 𝑁 𝑀 𝑑𝑀 = 0.4 ln 10𝜙∗10VY.Z(U[\) ]V]∗ 𝑒V\Y
45.6 747∗ 𝑑𝑀

For a huge sample of galaxies 
(~ 100,000), it might look 
something like this.



Advanced Parameter Estimation

Let’s say you have a sample of galaxies in a galaxy cluster, and you’ve measured all their absolute magnitudes. Now want 
to model the luminosity function of the cluster – the number of galaxies as a function of their absolute mag, N(M).

Adopt the Schecter function: 𝑁 𝑀 𝑑𝑀 = 0.4 ln 10𝜙∗10VY.Z(U[\) ]V]∗ 𝑒V\Y
45.6 747∗ 𝑑𝑀

But you don’t have a huge sample, since you are looking at one specific cluster. How do you estimate α, and L*?

Standard approach: 

Bin galaxies by magnitude to create N(M), then do a (non-linear) chi-sq fit, and solve for the parameters.

Problems:

• The errors in N(M) come from magnitude uncertainties, low N Poisson statistics, and binning decisions. They are 
complex and non-Gaussian!

• Our detection rate drops for fainter galaxies, so we systematically undercount them (“incompleteness”). We need to 
add corrections to the data to account for this before making the fit.



Advanced Parameter Estimation

Let’s say you have a sample of galaxies in a galaxy cluster, and you’ve measured all their absolute magnitudes. Now want 
to model the luminosity function of the cluster – the number of galaxies as a function of their absolute mag, N(M).

Adopt the Schecter function: 𝑁 𝑀 𝑑𝑀 = 0.4 ln 10𝜙∗10VY.Z(U[\) ]V]∗ 𝑒V\Y
45.6 747∗ 𝑑𝑀

But you don’t have a huge sample, since you are looking at one specific cluster. How do you estimate α, and L*?

Alternative approach: 

Make a model of what the luminosity function should look like for a given set of LF parameters. Add the uncertainties 
and incompleteness to that model, then estimate the likelihood that you would measure the data you have, given that 
model.

You dont “correct” the data, you alter the model to account for uncertainty and systematic error.

This is an approach that uses Bayesian statistics



Bayesian Estimation

We speak in terms of probabilities. What is the probability you’d get the data you measure given some underlying 
model?

Bayes’ theorem:  𝑃(𝐵|𝐴) = ^(_|a)^(a)
^(_)  

A = your dataset
B = the parameters you’re trying to measure

P(B|A): The posterior probability. What is the probability of B, given that you’ve measured A? Your best estimate 
is the B that is most-likely.

P(A|B): The likelihood function. What is the likelihood of measuring A, given that model B is true?

P(B): The prior. What is the probability of B?

P(A): Normalizing factor. What is the probability you could measure A to begin with? Usually we just set this = 1, 
since we have measured the dataset!



Bayesian Estimation

We speak in terms of probabilities. What is the probability you’d get the data you measure given some underlying 
model?

Bayes’ theorem:  𝑃(𝐵|𝐴) = ^(_|a)^(a)
^(_)  

A = your dataset
B = the parameters you’re trying to measure

P(B|A): The posterior probability: the probability that some particular set of α and M* is true, given my dataset.

P(A|B): The likelihood function: the probability of measuring my dataset given some particular value of α and M*

P(B): The prior. my prior beliefs about reasonable possibilities for α and M*

P(A): Normalizing factor. What is the probability you could measure A to begin with? Usually we just set this = 1, 
since we have measured the dataset!



Bayesian Estimation

Yes, but how do we actually do this? A cartoon sketch:

1. You: Decide your priors. What are reasonable value ranges (and probabilities) for the parameters of your 
model (𝛼 and 𝑀∗)?

2. You: Start with an initial guess for (𝛼, 𝑀∗) at random, given your priors.

3. Code: Model the observed luminosity function for those values of (𝛼, 𝑀∗), including observational 
uncertainties. Use this model LF to estimate the likelihood of finding galaxies with the absolute magnitudes 
in my sample.

4. Code: tweak the choices of (𝛼, 𝑀∗), go back to step 3. Do this loop many times.

5. Code: Plot the likelihood histograms calculated from the many different parameter tweaks. 

Many different Bayesian codes available online, the one I use is emcee (Foreman-Mackey+12)

https://emcee.readthedocs.io/en/stable/
https://arxiv.org/abs/1202.3665


Example 1: mock sample of N=100,000 galaxies 
with no incompleteness or uncertainty.
 
Constructed using 𝑚∗ = 14.3, 𝛼 = −1.2

Flat Priors: 
• 13 < 𝑚∗ < 16
• −1.5 < 𝛼 < −0.5



Example 2: mock sample of N=1,000 galaxies 
with no observational uncertainty.
 
Constructed using 𝑚∗ = 14.3, 𝛼 = −1.2

Flat Priors: 
• 13 < 𝑚∗ < 16
• −1.5 < 𝛼 < −0.5



Example 3: mock sample of N=300 galaxies 
with no observational uncertainty.
 
Constructed using 𝑚∗ = 14.3, 𝛼 = −1.2

Flat Priors: 
• 13 < 𝑚∗ < 16
• −1.5 < 𝛼 < −0.5



Example 4: mock sample of N=500 galaxies 
with incompleteness and photometric 
uncertainty.
 
Constructed using 𝑚∗ = 14.3, 𝛼 = −1.2

Flat Priors: 
• 13 < 𝑚∗ < 16
• −1.5 < 𝛼 < −0.5

Uncertainty

Incom
pleteness
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Example 4: mock sample of N=500 galaxies 
with incompleteness and photometric 
uncertainty.
 
Constructed using 𝑚∗ = 14.3, 𝛼 = −1.2

Priors: 
• 𝑚∗: Gaussian peaked at m=14.3 with 𝜎=0.1
• 𝛼:	−1.5 < 𝛼 < −0.5


