Light and Matter: Reading Messages from the Cosmos

Light and Color

 Light is a form of energy (think of the warmth of sunlight or a lightbulb)

 "White light" is actually made up of many different colors.

How do light and matter interact?

- Emission: matter can emit light
- Absorption: matter can absorb light
- Transmission
 - Transparent objects transmit light.
 - Opaque objects block (absorb) light.
- Reflection/scattering: light can "bounce" off matter

Reflection and Scattering

 Movie screen scatters light in all directions.

Interactions of Light with Matter

 Interactions between light and matter determine the appearance of everything around us.

Thought Question

Why is a rose red?

- A. The rose absorbs red light.
- B. The rose transmits red light.
- C. The rose emits red light.
- D. The rose reflects red light.

Thought Question

Why is a rose red?

- A. The rose absorbs red light.
- B. The rose transmits red light.
- C. The rose emits red light.
- D. The rose reflects red light.

What have we learned?

How do we experience light?

- Light is a form of energy.
- Light comes in many colors that combine to form white light.

How do light and matter interact?

- Matter can emit light, absorb light, transmit light, and reflect (or scatter) light.
- Interactions between light and matter determine the appearance of everything we see.

5.2 Properties of Light

- Our goals for learning:
 - What is light?
 - What is the electromagnetic spectrum?

What is light?

Light can act either like a wave or like a particle.

Particles of light are called photons.

Waves

A wave is a
 pattern of motion
 that can carry
 energy without
 carrying matter
 along with it.

Wavelength is the distance from one peak to the next (or one trough to the next).

Leaf bobs up and down with the **frequency** of the waves.

Properties of Waves

- Wavelength is the distance between two wave peaks.
- Frequency is the number of times per second that a wave vibrates up and down.

Wave speed = wavelength x frequency

Light: Electromagnetic Waves

a Electrons move when light passes by, showing that light carries a vibrating electric field.

- A light wave is a vibration of electric and magnetic fields.
- Light interacts with charged particles through these electric and magnetic fields.

Wavelength and Frequency

wavelength x frequency = speed of light = constant

Particles of Light

- Particles of light are called photons.
- Each photon has a wavelength and a frequency.
- The energy of a photon depends on its frequency.

Wavelength, Frequency, and Energy

$$\lambda \times f = c$$

 $\lambda = \text{wavelength}, \quad f = \text{frequency}$
 $c = 3.00 \times 10^8 \text{ m/s} = \text{speed of light}$

 $E = h \times f = \text{photon energy}$ $h = 6.626 \times 10^{-34} \text{ joule } \times \text{s} = \text{Planck's}$ constant

What is the electromagnetic spectrum?

Thought Question

The higher the photon energy,

- A. the longer its wavelength.
- B. the shorter its wavelength.
- C. energy is independent of wavelength.

Thought Question

The higher the photon energy,

- A. the longer its wavelength.
- B. the shorter its wavelength.
- C. energy is independent of wavelength.

What have we learned?

What is light?

- Light can behave like either a wave or a particle.
- A light wave is a vibration of electric and magnetic fields.
- Light waves have a wavelength and a frequency.
- Photons are particles of light.

What is the electromagnetic spectrum?

- Human eyes cannot see most forms of light.
- The entire range of wavelengths of light is known as the electromagnetic spectrum.

5.3 Properties of Matter

- Our goals for learning:
 - What is the structure of matter?
 - What are the phases of matter
 - How is energy stored in atoms?

What is the structure of matter?

Proton: particle in nucleus, positive charge

Neutron: particle in nucleus, no charge

Electron: particle in a "cloud" around the nucleus, negative charge

In a normal (un-ionized) atom, # of protons = # of electrons.

Atomic Terminology

- Atomic number = # of protons in nucleus
- Atomic mass = # of protons + # of neutrons

Number of protons defines the element!

Atomic Terminology

 Isotope: same # of protons but different # of neutrons (⁴He, ³He)

 Molecule: consists of two or more atoms bound together (water: H₂O, carbon dioxide: CO₂)

What are the phases of matter?

- Familiar phases:
 - Solid (ice)
 - Liquid (water)
 - Gas (water vapor)
- Phases of same material behave differently because of differences in chemical bonds.

Phase Changes

- lonization: stripping of electrons, changing atoms into plasma
- Dissociation: breaking of molecules into atoms
- Evaporation: breaking of flexible chemical bonds, changing liquid into gas
- Melting: breaking of rigid chemical bonds, changing solid into liquid

Phases and Pressure

- Phase of a substance depends on both temperature and pressure.
- Often more than one phase is present.

How is energy stored in atoms?

Electrons in atoms are restricted to particular energy levels.

Energy Level Transitions

 The only allowed changes in energy are those corresponding to a transition between energy levels.

What have we learned?

What is the structure of matter?

 Matter is made of atoms, which consist of a nucleus of protons and neutrons surrounded by a cloud of electrons.

What are the phases of matter?

- Adding heat to a substance changes its phase by breaking chemical bonds.
- As temperature rises, a substance transforms from a solid to a liquid to a gas, then the molecules can dissociate into atoms.
- Stripping of electrons from atoms (ionization) turns the substance into a plasma.

What have we learned?

How is energy stored in atoms?

- The energies of electrons in atoms correspond to particular energy levels.
- Atoms gain and lose energy only in amounts corresponding to particular changes in energy levels.