Telescopes: Portals of Discovery

6.1 Eyes and Cameras: Everyday Light Sensors

- Our goals for learning:
 - How do eyes and cameras work?

The Eye

Refraction

Example: Refraction at Sunset

 Sun appears distorted at sunset because of how light bends in Earth's atmosphere.

Example: Prisms

 Prism refracts light – different wavelength have different refraction angles

Focusing Light

 Refraction can cause parallel light rays to converge to a focus.

Image Formation

Recording Images

- A camera focuses light like an eye and captures the image with a detector.
- The CCD detectors in digital cameras are similar to those used in modern telescopes.

What have we learned?

How do eyes and cameras work?

- Eyes use refraction to bend parallel light rays so that they form an image.
- The image is in focus if the focal plane is at the retina.
- Cameras focus light like your eye and record the image with a detector.

6.2 Telescopes: Giant Eyes

What are the two most important properties of a telescope?

What are the two basic designs of telescopes?

What are the two most important properties of a telescope?

- Light-collecting area: Telescopes with a larger collecting area can gather a greater amount of light in a shorter time.
- 2. Angular resolution: Telescopes that are larger are capable of taking images with greater detail.

Light-Collecting Area

• A telescope's diameter tells us its light-collecting area (like wider buckets collect more rain). If the telescope has a diameter of d, it has a collecting area: $A = \pi (d/2)^2$

So a 4-meter telescope has 16x the light collecting area of a 1-meter telescope.

 The largest telescopes currently in use have a diameter of about 10 meters.

Angular Resolution

 The minimum angular separation that the telescope can distinguish between

Angular Resolution

 Stars are so far away that they all look like "dots".

 But interference between light and telescope blurs these dots.

 Bigger telescopes: less interference, sharper images

Angular Resolution

Resolution gets better from A \rightarrow D: Sharper images

What are the two basic designs of telescopes?

- Refracting telescope: focuses light with lenses
- Reflecting telescope: focuses light with mirrors

Refraction

Refracting Telescope

lens

Refracting telescopes need to be very long, with large, heavy lenses.

If the lenses are too big/heavy, they will sag out of shape.

Also, since light passes through the lens, the glass needs to be perfect quality

Refracting Telescope

Reflection

Reflection is another way of bending light!

Reflecting Telescope

Why are reflectors better than refractors?

- 1. Light doesn't pass through the glass, so only the surface has to be perfect.
- 2. Mirrors can be supported from their back, so they don't sag when they get big.
- 3. Reflection doesn't depend on wavelength, so all colors focus the same.
- 4. In a reflector, light path is "folded" so the telescope can be shorter: cheaper to build the observatory!

So most modern telescopes are reflectors.

Mirrors in Reflecting Telescopes

Twin Keck telescopes on Mauna Kea in Hawaii

Segmented 10-meter mirror of a Keck telescope

What have we learned?

What are the two most important properties of a telescope?

- Collecting area determines how much light a telescope can gather.
- Angular resolution is the minimum angular separation a telescope can distinguish.

What are the two basic designs of telescopes?

- Refracting telescopes focus light with lenses.
- Reflecting telescopes focus light with mirrors.
- The vast majority of professional telescopes are reflectors.

6.3 Telescopes and the Atmosphere

- Our goals for learning:
 - How does Earth's atmosphere affect ground-based observations?
 - Why do we put telescopes into space?

How does Earth's atmosphere affect ground-based observations?

- The best ground-based sites for astronomical observing are:
 - dark (far from city lights)
 - calm (not too windy)
 - high (less atmosphere to see through)
 - dry (few cloudy nights)

Light Pollution

 Scattering of human-made light in the atmosphere is a growing problem for astronomy.

Atmospheric "Seeing"

The atmosphere blurs our view of distant planets and stars

Top of mountains: less atmosphere to look through

Calm, High, Dark, Dry

The best observing sites are atop remote mountains, often in deserts.

Summit of Mauna Kea, Hawaii

Calm, High, Dark, Dry

The best observing sites are atop remote mountains, often in deserts.

Summit of Kitt Peak, Arizona

Why do we put telescopes into space?

Transmission in Atmosphere

- Only radio and visible light pass easily through Earth's atmosphere.
- We need telescopes in space to observe other forms.

Twinkling and Turbulence

Bright star viewed with ground-based telescope

Same star viewed with Hubble Space Telescope

 Turbulent air flow in Earth's atmosphere distorts our view, causing stars to appear to twinkle.

What have learned?

- How does Earth's atmosphere affect groundbased observations?
 - Telescope sites are chosen to minimize the problems of light pollution, atmospheric turbulence, and bad weather.
- Why do we put telescopes into space?
 - Forms of light other than radio and visible do not pass through Earth's atmosphere.
 - Also, much sharper images are possible because there is no turbulence.

6.4 Telescopes and Technology

- Our goals for learning:
 - How can we observe invisible light?
 - How can multiple telescopes work together?

How can we observe "invisible" light?

 A standard satellite dish is essentially a telescope for observing radio waves.

Radio Telescopes

A radio
telescope is
like a giant
mirror that
reflects
radio waves
to a focus.

Infrared and Ultraviolet Telescopes

SOFIA Spitzer

 Infrared and ultraviolet light telescopes operate like visible-light telescopes but need to be above atmosphere to see all wavelengths.

X-Ray Telescopes

 X-ray telescopes also need to be above the atmosphere.

Chandra X-Ray Observatory

How can multiple telescopes work together?

Interferometry

 Interferometery is a technique for linking two or more telescopes so that they have the angular resolution of a single large one.

Interferometry

Easiest to do with radio telescopes

Very Large Array (VLA)

Interferometry

Easiest to do with radio telescopes

Very Large Array (VLA)

What have learned?

- How can we observe "invisible" light at other wavelengths?
 - Telescopes for invisible light are usually modified versions of reflecting telescopes.
 - Many of the telescopes used for observing invisible light are in space.
- How can multiple telescopes work together?
 - Linking multiple telescopes using interferometry enables them to produce the angular resolution of a much larger telescope.