
ASTR 222 Homework #5 
 
1. Deriving the Expansion History of the Universe (20 points) 
 
Start with the Friedman equation: 
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First, derive R(t) for a flat, matter-only (no dark energy) Universe by integrating the Friedman equation 
(starting from 𝑡 = 0). Then use your expression for R(t) to show that the age of such a Universe is 𝑡" =
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doing this, you will find it helpful to remember that the density of matter scales with volume, so that you can 
rewrite 𝜌 as 𝜌"𝑅&#. 
 
Next, in the very early universe (before 𝑡 ≈ 10,000 years), the energy density of the photons in the Universe 
was much higher than the matter density: the universe was “radiation dominated.” While the energy density 
of matter scales as 𝑅&# (i.e., its just a volume effect), the energy density of photons scales as 𝑅&', since not 
only is the volume of the universe going up as it expands, photons are being redshifted and thus have lower 
energy. This results in an that extra factor of 𝑅 in the scaling factor for photon energy density. 
 
Use the expression for energy density scaling in place of matter density scaling in the Friedman equation to 
work out how R(t) scales with time during the radiation dominated era (again, assume a flat universe). 
Compare that expression to what you got in the previous calculation for the flat matter-dominated universe. 
 
Now finally consider a flat Universe with a cosmological constant that drives the expansion. At late times, 
when the Universe has expanded to very large size, integrate the Friedman equation to work out how R(t) 
scales with time in this “Lambda dominated era.” In this case start your integration from some late time 𝑡()*+  
when the Universe has some scale factor 𝑅()*+, and integrate forward in time from there. 
 
In each of these calculations, make sure to start with the full Friedman equation. Explain any physical 
assumptions or justifications for dropping terms from the equation before deriving your solution. Give good 
explanations for each step of your derivation; remember, I don’t want pages and pages of unexplained math! 
 
2. Cosmological Densities (20 points) 
 
Using the expression for the critical density (the density of matter needed to make the Universe spatially flat 
by matter alone): 𝜌,-.* =	3𝐻! 8𝜋𝐺⁄ , work out the critical density today (at 𝑡 = 𝑡"), in units of 𝑀⨀ 𝑀𝑝𝑐#⁄ .  
 
Now work out the density (again in 𝑀⨀ 𝑀𝑝𝑐#⁄ ) of various objects in the Universe: 
 

• A globular cluster 
• The Milky Way galaxy 
• The Local Group of galaxies 
• The Coma Cluster of galaxies 

 
For any information you need to get (masses, sizes, distances, etc), make sure to cite your sources. 
 



 
 
In each case, after calculating the density, also calculate an “Omega-object”, i.e.: 
 

Ω012 =
ρ012
ρ,-.*

 

 
Take some care with units while doing these calculations, and remember that if you measure distances in pc, 
velocities in km/s, masses in solar masses, and time in Myr, then the gravitational constant can be expressed 
as 𝐺 = 4.3 × 10&#	pc	(km s⁄ )2	𝑀⨀

&$. Remember also that 1 km s⁄ ≈1pc Myr⁄ . 
 
Also, in each case, explain whether you feel your density estimate of the object is reasonable, or if you think it 
may be an underestimate or an overestimate. Explain your reasoning. 
 
Finally, do you think any of them are a reasonable estimate of the overall density of the Universe? Again, 
explain your reasoning physically, not just based on a comparison of Ω012  to some expected value of Ω4. 
 
3. Observational Cosmology (20 points) 
 
(Note: Detailed calculations of apparent magnitudes, sizes, “distances”, times, etc as a function of redshift 
under different cosmologies can be very complicated mathematically, so rather than working things out 
analytically, we are going to use astropy’s cosmology package to do things for us. See this sample jupyter 
notebook for how to use it.) 
 
In the local universe, the massive elliptical galaxy M49 lies at a distance of 16.5 Mpc, has a total luminosity of 
𝐿5,*0* = 1.6 × 10$$	𝐿⨀ and a physical half-light radius of 𝑟+ = 25 kpc. Using our standard (i.e., non-
cosmological) methods for calculating apparent magnitudes, angular sizes, etc, calculate M49’s total apparent 
V magnitude, angular half-light radius (in arcsec), and effective surface brightness (in magnitudes per square 
arcsecond). Remember that the effective surface brightness measures the average surface brightness inside 
the half-light radius, and we can measure that from 〈𝜇〉+ = 𝑚$ !⁄ + 2.5 log 𝐴, where 𝑚$ !⁄  is the apparent 
magnitude of half the total light, and A is the area (in square arcseconds) inside the half-light radius. 
 
Now imagine observing M49 redshifted by different amounts, and we’ll ask how the observed properties of 
the galaxy change as we move it to higher and higher redshift. We’ll compare the properties calculated using a 
simple Hubble law (which will be incorrect at higher redshift) vs those calculated in a cosmologically correct 
way. The idea here will be to find out how fast we get bad answers by doing things the simple (and 
cosmologically incorrect) way. Make a table like the one shown on the next page to report your calculations. 
 
For the first three rows, calculate the age of the universe at each redshift, the lookback time to each redshift, 
and the rest-frame of the V filter at each redshift. This last item refers to the wavelength of emitted light that 
you are observing when you observe using the V filter. Remember that since the light from the galaxy is 
redshifted, the light we are seeing was actually emitted by the galaxy at much bluer wavelengths, before being 
redshifted to the wavelengths we observe.  So if the V filter has a central wavelength of 𝜆, = 5500	Å, and the 
relationship between rest-frame and observed wavelength is given by 𝜆018 = 𝜆-+8*(1 + 𝑧), what rest-frame 
wavelength does that correspond to in the rest-frame spectrum of M49 at each of those redshifts? 
 
Next, given the redshift calculate the distance, apparent magnitude, and angular half-light radius of M49 at 
each redshift simply using a simple Hubble’s law (𝑣 = 𝐻"𝑑) and the regular expressions for apparent 
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magnitude and angular size. Use 𝐻" = 72 km/s/Mpc for this. Remember, we know doing the calculation this 
way is wrong at higher redshift, but we are going to look at how quickly it goes wrong. 
 
Finally let’s do the calculation the right way. Adopt our “best” cosmological model (𝐻" = 72, 	Ω4 = 0.3, 	Ω9 =
0.7) and use astropy’s cosmology package to work out the rest of the entries in the table below, which will 
give the “cosmologically correct” observed properties of M49 at different redshifts. 
 

Property 𝑧 = 0.00396 𝑧 = 0.01 𝑧 = 0.1 𝑧 = 0.5 𝑧 = 1 𝑧 = 5 
Age of Universe (Gyr)       
Look back time  (Gyr)       
V filter rest-frame 
wavelength (Angstroms) 

      

Simple Hubble Law based calculations 
Hubble Law Distance 
(Mpc) 

      

Hubble Distance 
Apparent V mag 

      

Hubble Distance Half-
light radius (arcsec) 

      

Cosmologically correct redshift-based calculations 
Luminosity Distance 
(Mpc) 

      

Apparent V mag       
Angular Diameter 
Distance (Mpc) 

      

Half-light radius (arcsec)       

Effective surface 
brightness (mags per sq. 
arcsec) 

      

 
Note that since 𝑧 = 0.00396 is the redshift that corresponds to a distance of 16.5 Mpc, the “cosmologically 
correct” numbers at this redshift should pretty much match what you calculated by hand in the first step of 
the problem, so that would be a good check to make sure you’re doing everything correctly. 
 
After completing the table, answer the following questions: 
 

• If you are used to using plain old Hubble Law distances, how far out in redshift can you go before your 
“Hubble law magnitudes” are wrong by 0.1 mag or more? How far out can you go before your angular 
half-light radius will be wrong by 10% or more?  

 
• Now look at the cosmologically correct half light radius as you go to higher redshift. Assume that you 

can accurately measure half-light radii as long as they are bigger than 0.5 arcsec. How far out in 
redshift can you go before the galaxy becomes too small to accurately measure its half-light radius? 

 



• In class, when talking about galaxies, we said that one of the reasons that surface brightness is so 
important is that it is “distant invariant” – that is, if you imagine moving a galaxy to larger distances, its 
observed surface brightness doesn’t change. Look at the cosmologically-correct surface brightness 
calculation: is it also “redshift invariant”? Or does M49 show a brighter or fainter surface brightness as 
you move it to higher redshift? Look at how apparent magnitude and angular size change with redshift 
and explain why the observed surface brightness changes the way it does. 

 
• The apparent V magnitude (and surface brightness) you calculate this way don’t account for another 

important effect: the shift from rest-frame to observed wavelength due to the redshift. The light we 
are observing using the V filter is actually much bluer light emitted by the galaxy that has subsequently 
been redshifted. If you were to actually correct for this effect (a complex process called a “K-
correction”), would that make the observed magnitudes and surface brightnesses brighter, fainter, or 
would they not change at all? To answer this, think about what the emitted spectrum from an elliptical 
galaxy like M49 ought to look like, and make sure to explain your reasoning. 
 

• Finally, if we want to be looking back to times when the universe was younger than 2 Gyr, how far out 
in redshift would we have to look? What about if we only wanted to look back to times earlier half the 
Universe’s current age? 

 
4. Age constraints on cosmological parameters (20 points) 
 
(Again, use astropy’s cosmology functions get t(z) estimates for different sets of cosmological parameters. 
Always use 𝛺: = 0	universes, until you get to the last step!) 

• It's 1990. You are a good, party-line cosmologist and "know" that Ω; = 1, and that there is no such 
thing as the cosmological constant. You also "know" that globular clusters are 14-16 Gyr old. What 
limits can you place on the value of 𝐻"? (Remember, the universe can be older than the globular 
clusters, but it can’t be younger!) 
 

• A few years later, you decide that the measurements of 𝐻"	are getting better, so you need to believe 
them. So take 𝐻" = 55 km/s/Mpc, and tell me what constraint you can place on Ω;. What about if you 
believe 𝐻" = 65? 𝐻" = 75? 
 

• Then in 1997 we get much better data on globular clusters, which tell us that those globular clusters 
are actually significantly younger, more like 11-13 Gyr old. At the same time, you decide, for better or 
worse, that you like 𝐻" = 70 km/s/Mpc. Now what constraints can you place on Ω;? 
 

• Then in 1998 the high redshift galaxy LBD53W091 was discovered. It lives at a redshift of z=1.55, and 
its was determined to have an age of at least 3.5 Gyr, and maybe even older. How does this change 
your constraints on Ω;? 
 

• Six months later, the age of LBD53W091 was revised downwards, and became 1.7 +/- 0.3 Gyr. NOW 
how do your constraints on Ω;change? 
 

• Finally, this crazy Lambda idea starts to take off, so you have to consider Ω9	as well. Given your 
globular cluster ages and 𝐻" = 70 km/s/Mpc, pick values of Ω9	and, for those values, place limits on 
Ω;. Make a plot of your results on an Ω;-Ω9	plane, showing regions of "allowed cosmology" given 
your globular cluster age constraints. 


