
Understanding a distribution of measurements

Let’s say you have a repeated measurements of some value. How do we estimate the best value and uncertainty.

If your errors are independent and follow a Gaussian distribution:
• measure mean and standard deviation (𝑥̅, 𝜎)
• “standard error in the mean” is given by ⁄𝜎 𝑁

Is this a good assumption? Take a distribution of 50,000 measurements with 𝑥̅, 𝜎 = 0.5, 0.28, look at distribution.

(yellow: mean, red: mean +/- 1𝜎)

mean = np.average(data)
stdev = np,std(data)
mean_err = stdev/np.sqrt(len(data))

Understanding a distribution of measurements

Let’s say you have a repeated measurements of some value. How do we estimate the best value and uncertainty.

If your errors are independent and follow a Gaussian distribution:
• measure mean and standard deviation (𝑥̅, 𝜎)
• “error in the mean” is given by ⁄𝜎 𝑁

But other distributions can mimic the same answer, and may or may not be meaningful!

(yellow: mean, red: mean +/- 1𝜎)

mean = np.average(data)
stdev = np,std(data)
mean_err = stdev/np.sqrt(len(data))

Understanding a distribution of measurements

Let’s say you have a repeated measurements of some value. How do we estimate the best value and uncertainty.

If your errors are independent and follow a Gaussian distribution:
• measure mean and standard deviation (𝑥̅, 𝜎)
• “error in the mean” is given by ⁄𝜎 𝑁

And when the amount of data is small, it can be hard to tell if these are good estimates!

(yellow: mean +/- error in mean, red: mean +/- 1𝜎)

Moral of the story:

Gotta look at your data!

Do a plt.hist(data) to be
sure.

mean = np.average(data)
stdev = np,std(data)
mean_err = stdev/np.sqrt(len(data))

Simple Gaussian Propagation of Errors: Adding, Subtracting, Averaging

If you are adding or subtracting two things with uncertainties, the total uncertainty is the quadrature sum of the
individual uncertainties:

𝑧 = 𝑥 ± 𝑦

𝜎$% = 𝜎&% + 𝜎'%

I you are averaging many data values together (𝑥(± 𝜎&!) to get a final “best estimate” of what’s being measured, the
uncertainty on that estimate is given by the standard error of the mean:

𝑥̅ =
1
𝑁[

()"

*

𝑥(

𝜎&̅ =
1
𝑁
𝜎&!

Simple Gaussian Propagation of Errors: Using a linear (or linearized) function

𝑦 = 𝑓 𝑥 = 𝑎𝑥 + 𝑏

Propagate errors using the gradient method, adding in quadrature the error due to each of 𝑎, 𝑥, and 𝑏 :

𝜎'% =
𝜕𝑓
𝑑𝑥 𝜎&

%

+
𝜕𝑓
𝑑𝑎 𝜎,

%

+
𝜕𝑓
𝑑𝑏 𝜎-

%

so

𝜎'% = 𝑎𝜎& % + 𝑥𝜎, % + 𝜎- %

Uncertainty due to the uncertainties in 𝑎 and 𝑏

Uncertainty due to the measurement of 𝑥

Total uncertainty

Characterizing a linear (or linearized) relationship:

• Dataset of 𝑁 points: 𝑥(, 𝑦(
• Fit a line to data: 𝑦 = 𝑚𝑥 + 𝑏
• Calculate slope, intercept, and their uncertainties: 𝑚 ± 𝜎., 𝑏 ± 𝜎-
• Calculate root-mean-square (RMS) scatter around the fit: 𝜎/01% ≡ "

*
∑ 𝑦(− 𝑦2(3

% = "
*
∑ 𝑦(− 𝑚𝑥(+ 𝑏

%

The importance of scatter

The uncertainties on the fit tell you how well-determined the fit
parameters are.

The scatter of the fit tells you how well, on average, individual data
points obey the relationship.

Example: Tully Fisher Relationship ⇒

Lower fit uncertainties mean that the TF relationship is better-
determined.

Large scatter means any one galaxy may not perfectly obey TF.

fit uncertainty

scatter

Characterizing a linear (or linearized) relationship (least squares fitting, assuming Gaussian statistics):

make a linear fit, and calculate uncertainty and scatter

good = <some criterion> # dont want to include bad data

coeff, cov = np.polyfit(x[good],y[good],1,cov=True)

coeff_err = np.sqrt(np.diag(cov))

print(' slope = {:.3f} +/- {:.3f}'.format(coeff[0],coeff_err[0]))

print('intercept = {:.3f} +/- {:.3f}'.format(coeff[1],coeff_err[1]))

polynomial=np.poly1d(coeff)

xfit=np.linspace(x.min(),x.max())

plt.plot(xfit,polynomial(xfit),color='green',lw=3)

print(' scatter = {:.3f}'.format(np.std(y[good]-polynomial(x[good]))))

Linearization

Sometimes you will need to fit a power law, or a sinusoid, or an exponential. These are non-linear models, but can be
made linear.

Power Law: y = 𝑥4, fit for 𝛼

Linearize it: log 𝑦 = 	 log 𝑥4 = 𝛼 log 𝑥 , so fit a straight line to log(y) versus log(x), then the slope is alpha

Sine function: y = 𝐴 sin 𝑥 + 𝐵, fit for 𝐴 and 𝐵.

Linearize it: it is already linear if you fit a straight line to y vs sin(x) rather than y vs x.

Exponential: y = 𝑒 ⁄6& 7, fit for ℎ

Linearize it: ln 𝑦 = ln 𝑒 ⁄6& 7 = 6"
7
𝑥, so fit a straight line to ln(y) vs x and then ℎ is -1/slope.

But be careful
with fits...

Anscombe’s quartet: Fit y=mx+b and get the same r (correlation coefficient), m, b, σm, σb, σRMS

Beware the datasaurus!

Moral of the story: ALWAYS PLOT YOUR DATA AND ALWAYS OVERPLOT YOUR FITS!

