Understanding a distribution of measurements

Let’s say you have a repeated measurements of some value. How do we estimate the best value and uncertainty.

If your errors are independent and follow a Gaussian distribution: mean = np.average (data)
* measure mean and standard deviation (x, o) stdev = np,std(data)
e “standard error in the mean” is given by a/\/lv mean_err = stdev/np.sqrt(len(data))

Is this a good assumption? Take a distribution of 50,000 measurements with x, g = 0.5, 0.28, look at distribution.

(yellow: mean, red: mean +/- 10)

Gaussian distribution

800 A

700 -

600 1

500 -
= 400 -
300 -
200 -

100 A

0-
-050 -025 000 025 050 075 100 125 150

X

Understanding a distribution of measurements

Let’s say you have a repeated measurements of some value. How do we estimate the best value and uncertainty.

If your errors are independent and follow a Gaussian distribution: mean = np.average (data)
* measure mean and standard deviation (x, o) stdev = np,std(data)
« “error in the mean” is given by U/\/]v mean_err = stdev/np.sqrt(len(data))

But other distributions can mimic the same answer, and may or may not be meaningful!

(yellow: mean, red: mean +/- 10)

Flat distribution Bimodal distribution
800 -
200 - 700
600 -
150 -
500 -
= 400 -
100 -
300 -
50 - 200 -
100 A
0 Ll L 0 Ll Ll T T
-050 -025 000 0.25 0.50 0.75 100 125 150 -050 -025 000 0.25 0.50 0.75 100 125 150

X X

Understanding a distribution of measurements

Let’s say you have a repeated measurements of some value. How do we estimate the best value and uncertainty.

If your errors are independent and follow a Gaussian distribution: mean = np.average (data)
* measure mean and standard deviation (x, o) stdev = np,std(data)
« “error in the mean” is given by U/\/]v mean_err = stdev/np.sqrt(len(data))

And when the amount of data is small, it can be hard to tell if these are good estimates!

(yellow: mean +/- error in mean, red: mean +/- 10)

Gaussian distribution

Moral of the story: m—
175 1
Gotta look at your data! _—
. 125 1
Doaplt.hist(data) to be
< 100 -
sure.
0.75 1
0.50 -
0.25 -
000 = T T T

0.2 0.4 10

Simple Gaussian Propagation of Errors: Adding, Subtracting, Averaging

If you are adding or subtracting two things with uncertainties, the total uncertainty is the quadrature sum of the
individual uncertainties:

Z=xxty
oy = 05 + 0y

| you are averaging many data values together (x; * o,,) to get a final “best estimate” of what’s being measured, the
uncertainty on that estimate is given by the standard error of the mean:

Simple Gaussian Propagation of Errors: Using a linear (or linearized) function
y=f(x)=ax+b

Propagate errors using the gradient method, adding in quadrature the error due to each of a, x, and b :
2

3=[E)o] + [+[D)

SO

2

0-3% — [ao-x]2 + [XO'a]Z + [O-b]2

\ J

Total uncertainty |

Uncertainty due to the uncertaintiesin a and b

Uncertainty due to the measurement of x

Characterizing a linear (or linearized) relationship:

 Dataset of N points: (x; , y;)
 Fitalinetodata:y=mx+b

* Calculate slope, intercept, and their uncertainties: m + o,,,, b + 0y,

* Calculate root-mean-square (RMS) scatter around the fit: a}%MS =

The importance of scatter

The uncertainties on the fit tell you how well-determined the fit
parameters are.

The scatter of the fit tells you how well, on average, individual data
points obey the relationship.

Example: Tully Fisher Relationship =

Lower fit uncertainties mean that the TF relationship is better-
determined.

Large scatter means any one galaxy may not perfectly obey TF.

2|

~24
-22

o —20

«

E

= -18
~16
~14

Y(y; — yfit)z = %Z(Yi — (mx; + b))

T T T I T T T I T T T I T T T l T T T

1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1

2.5
Log(V) [km/s]

Characterizing a linear (or linearized) relationship (least squares fitting, assuming Gaussian statistics):

make a linear fit, and calculate uncertainty and scatter

good = <some criterion> # dont want to include bad data

coeff, cov = np.polyfit(x[good],y[good],1l,cov=True)

coeff err = np.sqrt(np.diag(cov))

print(' slope = {:.3f} +/- {:.3f}'.format(coeff[0O],coeff err[0]))
print('intercept = {:.3f} +/- {:.3f}'.format(coeff[1l],coeff err[l]))
polynomial=np.polyld(coeff)

xfit=np.linspace(x.min(),x.max())
plt.plot(xfit,polynomial(xfit),color="green',1lw=3)

print(' scatter = {:.3f}'.format(np.std(y[good]-polynomial(x[good]))))

Linearization

Sometimes you will need to fit a power law, or a sinusoid, or an exponential. These are non-linear models, but can be
made linear.

Power Law: y = x%, fit for a

Linearize it: log(y) = log(x%) = alog(x), so fit a straight line to log(y) versus log(x), then the slope is alpha

Sine function: y = Asinx + B, fit for A and B.

Linearize it: it is already linear if you fit a straight line to y vs sin(x) rather than y vs x.

Exponential: y = e ~*/" fit for h

Linearize it: Iny = In(e /") = %x, so fit a straight line to In(y) vs x and then h is -1/slope.

10 12 14 16 18
X1

8 10

X2

12

14

16

18

10 12 14 16 18
X3

10

X4

12

14

16

18

Beware the datasaurus!

100 ® 0

..”.;;‘.‘-' X Mean: 54.26

. o 1L Y Mean: 47.83

Seesinrsil e R ¥ 5D : 18 76

of ot R Y SD : 26.93

"“,,‘ Gore. @ -0.08
S

20 40 60 B0 100

Moral of the story: ALWAYS PLOT YOUR DATA AND ALWAYS OVERPLOT YOUR FITS!

