Understanding a distribution of measurements

Let’s say you have a repeated measurements of some value. How do we estimate the best value and uncertainty.

If your errors are independent and follow a Gaussian distribution: mean = np.average (data)
* measure mean and standard deviation (x, o) stdev = np,std(data)
e “standard error in the mean” is given by a/\/lv mean_err = stdev/np.sqrt(len(data))

Is this a good assumption? Take a distribution of 50,000 measurements with x, g = 0.5, 0.28, look at distribution.

(yellow: mean, red: mean +/- 10)
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Understanding a distribution of measurements

Let’s say you have a repeated measurements of some value. How do we estimate the best value and uncertainty.

If your errors are independent and follow a Gaussian distribution: mean = np.average (data)
* measure mean and standard deviation (x, o) stdev = np,std(data)
« “error in the mean” is given by U/\/]v mean_err = stdev/np.sqrt(len(data))

But other distributions can mimic the same answer, and may or may not be meaningful!

(yellow: mean, red: mean +/- 10)
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Understanding a distribution of measurements

Let’s say you have a repeated measurements of some value. How do we estimate the best value and uncertainty.

If your errors are independent and follow a Gaussian distribution: mean = np.average (data)
* measure mean and standard deviation (x, o) stdev = np,std(data)
« “error in the mean” is given by U/\/]v mean_err = stdev/np.sqrt(len(data))

And when the amount of data is small, it can be hard to tell if these are good estimates!

(yellow: mean +/- error in mean, red: mean +/- 10)
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Simple Gaussian Propagation of Errors: Adding, Subtracting, Averaging

If you are adding or subtracting two things with uncertainties, the total uncertainty is the quadrature sum of the
individual uncertainties:

Z=xxty
oy = 05 + 0y

| you are averaging many data values together (x; * o,,) to get a final “best estimate” of what’s being measured, the
uncertainty on that estimate is given by the standard error of the mean:



Simple Gaussian Propagation of Errors: Using a linear (or linearized) function
y=f(x)=ax+b

Propagate errors using the gradient method, adding in quadrature the error due to each of a, x, and b :
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Characterizing a linear (or linearized) relationship:

 Dataset of N points: (x; , y;)
 Fitalinetodata:y=mx+b

* Calculate slope, intercept, and their uncertainties: m + o,,,, b + 0y,

* Calculate root-mean-square (RMS) scatter around the fit: a}%MS =

The importance of scatter

The uncertainties on the fit tell you how well-determined the fit
parameters are.

The scatter of the fit tells you how well, on average, individual data
points obey the relationship.

Example: Tully Fisher Relationship =

Lower fit uncertainties mean that the TF relationship is better-
determined.

Large scatter means any one galaxy may not perfectly obey TF.
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Characterizing a linear (or linearized) relationship (least squares fitting, assuming Gaussian statistics):

# make a linear fit, and calculate uncertainty and scatter

good = <some criterion> # dont want to include bad data

coeff, cov = np.polyfit(x[good],y[good],1l,cov=True)

coeff err = np.sqrt(np.diag(cov))

print(' slope = {:.3f} +/- {:.3f}'.format(coeff[0O],coeff err[0]))
print('intercept = {:.3f} +/- {:.3f}'.format(coeff[1l],coeff err[l]))
polynomial=np.polyld(coeff)

xfit=np.linspace(x.min(),x.max())
plt.plot(xfit,polynomial(xfit),color="green',1lw=3)

print(' scatter = {:.3f}'.format(np.std(y[good]-polynomial(x[good]))))



Linearization

Sometimes you will need to fit a power law, or a sinusoid, or an exponential. These are non-linear models, but can be
made linear.

Power Law: y = x%, fit for a

Linearize it: log(y) = log(x%) = alog(x), so fit a straight line to log(y) versus log(x), then the slope is alpha

Sine function: y = Asinx + B, fit for A and B.

Linearize it: it is already linear if you fit a straight line to y vs sin(x) rather than y vs x.

Exponential: y = e ~*/"  fit for h

Linearize it: Iny = In(e /") = %x, so fit a straight line to In(y) vs x and then h is -1/slope.
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Beware the datasaurus!
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Moral of the story: ALWAYS PLOT YOUR DATA AND ALWAYS OVERPLOT YOUR FITS!





