
Photon Statistics and the Poisson distribution

For a series of discrete random events (like 
photons hitting a detector), the probability of 
seeing x events given an expectation of m 
events is given by the Poisson distribution Px

In astronomy terms:

Think of a star whose brightness is such that 
you’d expect to get m photons per second 
hitting your detector. What is the probability 
that you will measure x photons in a one 
second exposure?
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Photon Statistics

As m (the expectation value) gets large, the distribution 
resembles a Gaussian or normal distribution.
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The variance of any distribution is defined as

𝜎% ≡
1
𝑛+ 𝑥' −𝑚 %

In the general Gaussian distribution, σ is independent from m. 

But for the Poisson distribution, σ2=m.

Terminology:
σ2 = “variance” (np.var)
σ = “standard deviation” (np.std)



Detection significance

Say the background sky gives m=100 photons per 
pixel. By Poisson stats, the uncertainty in the sky 
level is then 𝜎 = 𝑚 = 100 = 10 photons.  So 
the sky level is 100 ± 10 photons/pixel.
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Detection significance

Say the background sky gives m=100 photons per 
pixel. By Poisson stats, the uncertainty in the sky 
level is then 𝜎 = 𝑚 = 100 = 10 photons.  So 
the sky level is 100 ± 10 photons/pixel.

How faint of a (one pixel) star could 
you detect?

N* = 10 photons è 1σ detection, 
quite possibly just a sky fluctuation. 
No detection.

N* = 30 photons è 3σ detection, 
likelihood of such a sky fluctuation is small. 
Borderline detection.

N* = 100 photons è 10σ detection, 
likelihood of a sky fluctuation is vanishingly tiny. 
Strong detection.



But, reality:

1. Stars (and galaxies!) are spread over many 
pixels, not just one. We have to think about 
integrating up the flux in some aperture, 
and then correcting for the sky flux in that 
aperture.

2. Photon noise from the sky isn’t the only 
noise source. Need to also worry about:
• Photon noise from the star
• Readout noise from the detector
• (Maybe) Dark noise: thermal electrons 

in the detector



Aperture Photometry (Stars)
Measure flux (total counts) inside aperture of given 
size 𝑟, which contains 𝑛('# pixels.

Estimate sky flux level (ADU/pix) from “average” ADU 
in pixels in surrounding annulus.

𝑓 = +𝐼)(*+ − 𝐼,-. ×𝑛('#

𝑚'/,0 = −2.5 log 𝑓 + 𝐶



Measuring Signal-to-Noise: Detection quality

Consider measuring the flux from a star inside an aperture that contains 𝑛('#	pixels.

Signal: 
• 𝑁∗, the total number of photons from the star.

Noise:
• Total Poisson noise from the star: 𝜎 = 𝑁∗  

• Per-pixel Poisson noise from the sky: 𝜎 = 𝑁,  

• Per-pixel Poisson noise from dark current: 𝜎 = 𝑁2 
• Per-pixel CCD read noise: 𝜎 = 𝑁3   

These noise contributions add in quadrature, so we get:

These N’s all refer to photons or 
electrons (e−), not detector 
counts (ADU)!

If needed, use gain (e-/ADU) to convert 
counts to e−

“The CCD Equation”
see Howell, Chapter 4.4
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𝑁∗ + 𝑛('#(𝑁, + 𝑁2 + 𝑁3%)

Read noise is not photon 
statistics, so it doesn’t get 
square-rooted. The read noise 
level is what you measure from 
the zero images.



Example: Schmidt Telescope + CCD
• gain = 2.5 e−/ADU
• read noise = 3.6 e− 
• ND = 0 ADU

In a 60s exposure in the M filter, we get
• Sky = 80 ADU = 200 photons (± 200 = 14) per pixel
• So let’s say that inside a circular aperture of r=5 pixels, a star has 136,000 ADU, or 

340,000 photons. Since the aperture contains 𝑛('# ≈ π5% ≈ 80 pixels, we calculate:

𝑆
𝑁 	=

340,000
340,000 + 80×(200 + 0 + 3.6%)

	= 	570

For a fainter star that produces ≈ 700 ADU, the same calculation gives S/N ≈ 12.

Uncertainty in Magnitude (for small uncertainties, 𝜎): 
• 𝜎$ ≈ ⁄𝜎4 𝑓 ≈ 	 ( ⁄𝑆 𝑁)"5

• Star 1: S/N = 570, so 𝜎$ ≈ 0.002 mag
• Star 2: S/N = 12, so 𝜎$ ≈ 0.09 mag

𝑆
𝑁 =

𝑁∗

𝑁∗ + 𝑛('#(𝑁, + 𝑁2 + 𝑁3%)

Very important: This calculation refers to random error in the 
measurement; calibration uncertainties set a floor to the final 
photometric uncertainty. It is very hard to do photometry with a 
true accuracy better than 0.01−0.02 mag (1% − 2% uncertainty)



S/N scaling with exposure time: how does S/N change as I expose longer?

Case 1: “Detector limited” (Faint things)

Detector noise (𝑁3) dominates the counts, so ⁄𝑆 𝑁 ≈ ⁄𝑁∗ 𝑁3
Since 𝑁3  is independent of exposure time, ⁄𝑆 𝑁 ∝ 𝑁∗ ∝ 𝑡*#(

Case 2: “Source limited” (Bright things)

Photons from the star (𝑁∗) dominate the counts, so ⁄𝑆 𝑁 ≈ ⁄𝑁∗ 𝑁∗ 	≈ 𝑁∗
Since 𝑁∗ scales with exposure time,  ⁄𝑆 𝑁 ∝ 𝑡*#(

𝑆
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Aperture Photometry (Stars)
Measure flux (total counts) inside aperture of given 
size 𝑟, which contains 𝑛('# pixels.

Estimate sky flux level (ADU/pix) from “average” ADU 
in pixels in surrounding annulus.

𝑓 = +𝐼)(*+ − 𝐼,-. ×𝑛('#

𝑚 = −2.5 log 𝑓 + (calibration	terms)



Aperture Photometry (Stars)

0.4” pixels, 1.2” FWHM seeing 
Howell et al 1989

FWHM

Apertures and aperture corrections

The bigger the aperture, the more flux and noise you 
get from sky photons in the aperture.

To maximize signal-to-noise, aperture should be 
dominated by star photons.

Optimal choice is 𝑟)( ≈ full-width-at-half-max (FWHM) 
of the stellar profile.

This means the aperture is not collecting all the light 
from the star, and you need to correct for the missing 
light: aperture corrections

See HW #2 for the calculation....

aperture too big

aperture maximizing S/N



Aperture photometry good here.

Aperture photometry not so good here!

PSF Fitting Photometry (Stars)



PSF Fitting Photometry (Stars)

Model the 2D point spread function (PSF) based on bright (not saturated!) stars.

Fit the model to individual stars, varying brightness of model to minimize residuals.

• Good for crowded fields.
• Often gives best magnitudes, as long as PSF model is well-determined
• But beware PSF variations (frame-to-frame, across the field of view, etc.)

1D analogy: fitting two Gaussians to a curve, easy to fit even with overlap


