Distant Standard Candles: Type la Supernovae
Review:

» White dwarf held up by electron degeneracy pressure. In degeneracy, pressure
depends only on density, not temperature.

* Ina binary system, mass transfer from companion slowly adds mass to the WD,
increasing central density and temperature.

* When mass reaches 1.3 Msun, temps get high enough that C/O can begin fusing.
This releases energy and raises core temp, which in turn drives faster C/O fusion.

* Runaway effect. When half the C/O converts to Fe, enough energy is released that
the star blows up.

But they are rare. Typically
not feasible for distances to a
particular galaxy, but good for
statistical/cosmological
studies of expansion rate.




Type la SNe are standard candles
once we apply the decline rate
correction (more luminous SNe fade
more slowly).

Am . = magnitude change 15 days
after peak, correlates with peak
absolute magnitude

Note, though, that the absolute
magnitudes shown here are derived
from Hubble Law distances, and thus
depend on the adopted Hubble
Constant. They are not independently
calibrated.

Mpg - 5 1og(h/65)

My - 5 log(h/65)

Kim, et al. (1997)
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Calibrating Type la SNe

To calibrate the peak luminosity, we want Cepheid distances to galaxies that have hosted
observed Type la supernovae.

The situation in 1997:
A. Saha: Hy from type Ia supernovae

SN Ia Galaxy Mpg(mazx) My (mazx) Amis(B)

1937C 1IC 4182 —19.65+0.18 —19.64£0.13 1.07
1895B NGC 5253 —19.80 4 0.28 —
1972E NGC 5253 —19.554+0.23 —19.50 = 0.21 0.94
1981B NGC 4536 —19.204+0.13 —19.32£0.12 1.10
1960F NGC 4496 —19.43+0.14 —19.5240.20 1.06
1990N NGC 4639 —19.33+0.23 —19.4240.23 1.01
1989B NGC 3627 —19.51+0.26 —19.49+0.25 1.31

(Mp(max)) = —19.51 + 0.06

scatter =0.17 mag



Much progress since then! (from Riess+16)
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Figure 2. HST observations of the host galaxies of ideal SNe Ia. The data used to observe Cepheids in 19 SN Ia hosts and NGC 4258 were collected over 20 years
with four cameras and over 600 orbits of HST time. 60-90 day campaigns in F555W and F814W or in F350LP were used to identify Cepheids from their light curves
with occasional reobservations years later to identify Cepheids with P > 60 days. Near-IR follow-up observations in FI60W are used to reduce the effects of host-
galaxy extinction, sensitivity to metallicity, and breaks in the P-L relation. Data sources: (1) HST SN Ia Calibration Project, Sandage et al. (2006); (2) HST Key
Project, Freedman et al. (2001); (3) Riess et al. (2005); (4) Macri et al. (2006); and (5) Mager et al. (2013).



Cepheid Period-Luminosity plots for each galaxy
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Figure 6. Near-infrared Cepheid P-L relations. The Cepheid magnitudes are shown for the 19 SN hosts and the four distance-scale anchors. Magnitudes labeled as
F160W are all from the same instrument and camera, WFC3 F160W. The uniformity of the photometry and metallicity reduces systematic errors along the distance
ladder. A single slope is shown to illustrate the relations, but we also allow for a break (two slopes) as well as limited period ranges.



Rethinking the Cepheids: How well do we know the calibrated period-luminosity relation?

Remember, to get the
calibrated Cepheid P-L
relationships, we had to
have distances to Cepheids,
which have uncertainties of
their own.
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Adapted by Stuart Robbins from: Jacoby et al. A Critical Review of Selected Techniques for
Measuring Extragalactic Distances. PASP, 104 (1992).



Direct Trigonometric
Parallaxes for Milky Way
Cepheids from Hubble

Riess+18
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Figure 12. P-L relation of Milky Way Cepheids based on trigonometric
parallax measurements. The points in blue were measured with the HST FGS
(Benedict et al. 2007) and Hipparcos (van Leeuwen et al. 2007) and are all
within 0.5 kpc, and the points in red are presented here from spatial scanning of
WEFC3 and are in the range of 1.7 < D < 3.6 kpc. The inset shows the
uncertainties in the measured parallaxes.



Rethinking the Cepheids: How well do we know the calibrated period-luminosity relation?

Remember, to get the
calibrated Cepheid P-L
relationships, we had to
have distances to Cepheids,
which have uncertainties of
their own.
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Given a direct geometric

distance from parallax (or
other methods), you can

calibrate the Cepheid P-L
relationship.

(If your Cepheid P-L
relation is calibrated
wrong, geometric
distances and Cepheid
distances will disagree.)
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Cepheids — Type Ia Supernovae

Given distances from 33
Cepheids, you can
calibrate the Type la SNe
peak magnitudes.

(If your SNe mags are
calibrated wrong, Cepheid
distances and SNe
distances will disagree.)

34

SN Ia: m-M (mag)

33

1 Cepheid: m-M (mag)



Given distances from SNe,
you can solve for the
Hubble constant by
making luminosity
distance match for more
distant SNe.

(If your Hubble constant is
wrong, SNe distances and
luminosity distances will
disagree.)

Type Ia Supernovae — redshift(z)

1 N v 1 1 1

i | SN Ta: m-M (mag)



The whole distance route to H,, in two steps.

Hy,=73.24 £ 1.74 km/s/Mpc (Riess+16)
Hy, =73.52 £ 1.62 km/s/Mpc (Riess+18)

»
S

Cepheid: m-M (mag)

0.2
0.4

— [~
n =]
—TTT T

s
T

04F
02F
0.0F

w
b

M (z,H,=73.2,qp.Jo)

Cepheids — Type Ia Supernovae
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Type Ia Supernovae — redshift(z)
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RIESS ET AL.
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Figure 13. Local measurements of H, compared to values predicted by CMB
data in conjunction with ACDM. We show 4 SN Ila-independent values
selected for comparison by Planck Collaboration et al. (2014) and their
average, the primary fit from R11, its reanalysis by Efstathiou (2014) and the
results presented here. The 3.40 difference between Planck+ACDM (Planck
Collaboration et al. 2016) and our result motivates the exploration of
extensions to ACDM.



